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Outline
• Variational autoencoder (VAE) 

• Semi-supervised learning with the VAE 

• Sequential application of VAE: the VRNN 

• Incorporating normalizing flows 

• Incorporating MCMC in the VAE inference
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Deep directed graphical models
• The Variational Autoencoder model: 

- Kingma and Welling, Auto-Encoding Variational Bayes, International 
Conference on Learning Representations (ICLR) 2014. 

- Rezende, Mohamed and Wierstra, Stochastic back-propagation and 
variational inference in deep latent Gaussian models. ICML 2014. 

• Unlike RBM, DBM, here we are interested in deep directed graphical 
models:
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Latent variable generative model

• latent variable model:  learn a mapping from some latent variable z 
to a complicated distribution on x. 

• Can we learn to decouple the true explanatory factors underlying the 
data distribution? E.g. separate identity and expression in face images

4

p(z) = something simple

Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007

p(x) =

∫
p(x, z) dz where p(x, z) = p(x | z)p(z)
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Variational autoencoder (VAE) approach

• Leverage neural networks to learn a latent variable model. 
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p(z) = something simple
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What VAE can do?
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p�(x|z) with the learned parameters �.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p�(z) = N (0, I) and the
posterior approximation q⇥(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and ⇥
denote the variational mean and s.d. evaluated at datapoint i, and let µj and ⇥j simply denote the
j-th element of these vectors. Then:

⇥
q�(z) log p(z) dz =
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The inference / learning challenge

• Where does z come from? — The classic directed model 
dilemma. 

• Computing the posterior                  is intractable. 

• We need it to train the directed model.
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Variational Autoencoder (VAE)

• Where does z come from? — The classic DAG problem. 

• The VAE approach: introduce an inference machine                
that learns to approximate the posterior               . 

- Define a variational lower bound on the data likelihood: 

• What is               ?
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qφ(z | x)
pθ(z | x)

pθ(x) ≥ L(θ,φ, x)

qφ(z | x)

regularization term reconstruction term

L(�, �, x) = Eq�(z|x) [log p�(x, z) � log q�(z | x)]

= Eq�(z|x) [log p�(x | z) + log p�(z) � log q�(z | x)]

= �DKL (q�(z | x)� p�(z)) + Eq�(z|x) [log p�(x | z)]
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VAE Inference model
• The VAE approach: introduce an inference model                

that learns to approximates the intractable posterior                
by optimizing the variational lower bound:  

• We parameterize                with another neural network:
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f(x):

qφ(z | x)
pθ(z | x)

qφ(z | x)

L(θ,φ, x) = −DKL (qφ(z | x)∥ pθ(z)) + Eqφ(z|x) [log pθ(x | z)]

qφ(z | x) = q(z; f(x,φ)) pθ(x | z) = p(x; g(z, θ))
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Reparametrization trick
• Adding a few details + one really important trick 

• Let’s consider z to be real and 

• Parametrize z as                                  where 

• (optional) Parametrize x a                                  where
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x :

f(z):

qφ(z | x) = N (z;µz(x),σz(x))

{ {µz(x) σz(x) z :

g(z):

σx(z) {

µx(z) {

z = µz(x) + σz(x)ϵz ϵz = N (0, 1)

ϵx = N (0, 1)x = µx(z) + σx(z)ϵx
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Training with backpropagation!
• Due to a reparametrization trick, we can simultaneously train both 

the generative model                  and the inference model              
by optimizing the variational bound using gradient backpropagation.
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qφ(z | x)pθ(x | z)

Forward propagation

Backward propagation

z

x x̂

qφ(z | x) pθ(x | z)

Objective function: L(θ,φ, x) = −DKL (qφ(z | x)∥ pθ(z)) + Eqφ(z|x) [log pθ(x | z)]
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Relative performance of VAE
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Figure from Diederik P. Kingma & Max Welling  

Figure 3: Comparison of AEVB to the wake-sleep algorithm and Monte Carlo EM, in terms of the
estimated marginal likelihood, for a different number of training points. Monte Carlo EM is not an
on-line algorithm, and (unlike AEVB and the wake-sleep method) can’t be applied efficiently for
the full MNIST dataset.

Visualisation of high-dimensional data If we choose a low-dimensional latent space (e.g. 2D),
we can use the learned encoders (recognition model) to project high-dimensional data to a low-
dimensional manifold. See appendix A for visualisations of the 2D latent manifolds for the MNIST
and Frey Face datasets.

6 Conclusion

We have introduced a novel estimator of the variational lower bound, Stochastic Gradient VB
(SGVB), for efficient approximate inference with continuous latent variables. The proposed estima-
tor can be straightforwardly differentiated and optimized using standard stochastic gradient meth-
ods. For the case of i.i.d. datasets and continuous latent variables per datapoint we introduce an
efficient algorithm for efficient inference and learning, Auto-Encoding VB (AEVB), that learns an
approximate inference model using the SGVB estimator. The theoretical advantages are reflected in
experimental results.

7 Future work

Since the SGVB estimator and the AEVB algorithm can be applied to almost any inference and
learning problem with continuous latent variables, there are plenty of future directions: (i) learning
hierarchical generative architectures with deep neural networks (e.g. convolutional networks) used
for the encoders and decoders, trained jointly with AEVB; (ii) time-series models (i.e. dynamic
Bayesian networks); (iii) application of SGVB to the global parameters; (iv) supervised models
with latent variables, useful for learning complicated noise distributions.
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Note: MCEM is Expectation Maximization, where p(z | x) is sampled using 
Hybrid (Hamiltonian) Monte Carlo  
For more see: Markov Chain Monte Carlo and Variational Inference: Bridging the Gap,  
Tim Salimans, Diederik P. Kingma, Max Welling

http://arxiv.org/find/stat/1/au:+Salimans_T/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Kingma_D/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Welling_M/0/1/0/all/0/1
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Effect of KL term: component collapse
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Component collapsing

Figure from Laurent Dinh & Vincent Dumoulin
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Component collapse & decoder weights

14
Figure from Laurent Dinh & Vincent Dumoulin

Effects on the model

Decoder weight norms



Semi-supervised Learning with 
Deep Generative Models

15

Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling (NIPS 2014)
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Semi-supervised Learning with Deep Generative Models

They study two basic approaches: 

• M1: Standard unsupervised feature learning (“self-taught learning”) 

- Train features z on unlabeled data, train a classifier to map from z to label y. 

- Generative model: (recall that x = data, z = latent features) 

• M2: Generative semi-supervised model.
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Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling (NIPS 2014)

by training feed-forward classifiers with an additional penalty from an auto-encoder or other unsu-
pervised embedding of the data (Ranzato and Szummer, 2008; Weston et al., 2012). The Manifold
Tangent Classifier (MTC) (Rifai et al., 2011) trains contrastive auto-encoders (CAEs) to learn the
manifold on which the data lies, followed by an instance of TangentProp to train a classifier that is
approximately invariant to local perturbations along the manifold. The idea of manifold learning
using graph-based methods has most recently been combined with kernel (SVM) methods in the At-
las RBF model (Pitelis et al., 2014) and provides amongst most competitive performance currently
available.

In this paper, we instead, choose to exploit the power of generative models, which recognise the
semi-supervised learning problem as a specialised missing data imputation task for the classifica-
tion problem. Existing generative approaches based on models such as Gaussian mixture or hidden
Markov models (Zhu, 2006), have not been very successful due to the need for a large number
of mixtures components or states to perform well. More recent solutions have used non-parametric
density models, either based on trees (Kemp et al., 2003) or Gaussian processes (Adams and Ghahra-
mani, 2009), but scalability and accurate inference for these approaches is still lacking. Variational
approximations for semi-supervised clustering have also been explored previously (Li et al., 2009;
Wang et al., 2009).

Thus, while a small set of generative approaches have been previously explored, a generalised and
scalable probabilistic approach for semi-supervised learning is still lacking. It is this gap that we
address through the following contributions:

• We describe a new framework for semi-supervised learning with generative models, em-
ploying rich parametric density estimators formed by the fusion of probabilistic modelling
and deep neural networks.

• We show for the first time how variational inference can be brought to bear upon the prob-
lem of semi-supervised classification. In particular, we develop a stochastic variational
inference algorithm that allows for joint optimisation of both model and variational param-
eters, and that is scalable to large datasets.

• We demonstrate the performance of our approach on a number of data sets providing state-
of-the-art results on benchmark problems.

• We show qualitatively generative semi-supervised models learn to separate the data classes
(content types) from the intra-class variabilities (styles), allowing in a very straightforward
fashion to simulate analogies of images on a variety of datasets.

2 Deep Generative Models for Semi-supervised Learning
We are faced with data that appear as pairs (X,Y) = {(x1, y1), . . . , (xN

, y
N

)}, with the i-th ob-
servation x

i

2 RD and the corresponding class label y
i

2 {1, . . . , L}. Observations will have
corresponding latent variables, which we denote by z

i

. We will omit the index i whenever it is clear
that we are referring to terms associated with a single data point. In semi-supervised classification,
only a subset of the observations have corresponding class labels; we refer to the empirical distribu-
tion over the labelled and unlabelled subsets as ep

l

(x, y) and ep
u

(x), respectively. We now develop
models for semi-supervised learning that exploit generative descriptions of the data to improve upon
the classification performance that would be obtained using the labelled data alone.

Latent-feature discriminative model (M1): A commonly used approach is to construct a model
that provides an embedding or feature representation of the data. Using these features, a separate
classifier is thereafter trained. The embeddings allow for a clustering of related observations in a
latent feature space that allows for accurate classification, even with a limited number of labels.
Instead of a linear embedding, or features obtained from a regular auto-encoder, we construct a
deep generative model of the data that is able to provide a more robust set of latent features. The
generative model we use is:

p(z) = N (z|0, I); p
✓

(x|z) = f(x; z,✓), (1)

where f(x; z,✓) is a suitable likelihood function (e.g., a Gaussian or Bernoulli distribution) whose
probabilities are formed by a non-linear transformation, with parameters ✓, of a set of latent vari-
ables z. This non-linear transformation is essential to allow for higher moments of the data to be
captured by the density model, and we choose these non-linear functions to be deep neural networks.
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x

z

x

z
y

Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
✓

(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p

✓

(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p

✓

(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p

✓

(z1|y, z2) and p
✓

(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q

�

(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q

�

(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q

�

(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q

�

(z, y|x) = q
�

(z|x)q
�

(y|x), specified as Gaussian and multinomial
distributions respectively.

M1: q
�

(z|x) = N (z|µ
�

(x), diag(�2
�

(x))), (3)

M2: q
�

(z|y,x) = N (z|µ
�

(y,x), diag(�2
�

(x))); q
�

(y|x) = Cat(y|⇡
�

(x)), (4)
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Semi-supervised Learning with Deep Generative Models

• M1+M2: Combination semi-supervised model  

- Train generative semi-supervised model on unsupervised features z1 on 
unlabeled data, train a classifier to map from z1 to label z1.

17
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the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q

�

(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q

�

(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q

�

(z, y|x) = q
�

(z|x)q
�

(y|x), specified as Gaussian and multinomial
distributions respectively.

M1: q
�

(z|x) = N (z|µ
�

(x), diag(�2
�

(x))), (3)

M2: q
�

(z|y,x) = N (z|µ
�

(y,x), diag(�2
�

(x))); q
�

(y|x) = Cat(y|⇡
�

(x)), (4)

3

Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
✓

(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p

✓

(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p

✓

(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p

✓

(z1|y, z2) and p
✓

(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q

�

(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q

�

(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q

�

(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q

�

(z, y|x) = q
�

(z|x)q
�

(y|x), specified as Gaussian and multinomial
distributions respectively.

M1: q
�

(z|x) = N (z|µ
�

(x), diag(�2
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(x))), (3)

M2: q
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(z|y,x) = N (z|µ
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(y,x), diag(�2
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(x))); q
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(y|x) = Cat(y|⇡
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(x)), (4)
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parameters.
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Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
✓

(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p

✓

(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p

✓

(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p

✓

(z1|y, z2) and p
✓

(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q

�

(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q

�

(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q

�

(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q

�

(z, y|x) = q
�

(z|x)q
�

(y|x), specified as Gaussian and multinomial
distributions respectively.

M1: q
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(y,x), diag(�2
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(x))); q
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(y|x) = Cat(y|⇡
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(x)), (4)

3

Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
✓

(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p

✓

(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p

✓

(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p

✓

(z1|y, z2) and p
✓

(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q

�

(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q

�

(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q

�

(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q

�

(z, y|x) = q
�

(z|x)q
�

(y|x), specified as Gaussian and multinomial
distributions respectively.

M1: q
�

(z|x) = N (z|µ
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(x), diag(�2
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(x))), (3)

M2: q
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(z|y,x) = N (z|µ
�

(y,x), diag(�2
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(x))); q
�

(y|x) = Cat(y|⇡
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(x)), (4)

3

Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
✓

(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p

✓

(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p

✓

(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p

✓

(z1|y, z2) and p
✓

(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q

�

(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q

�

(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q

�

(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q

�

(z, y|x) = q
�

(z|x)q
�

(y|x), specified as Gaussian and multinomial
distributions respectively.

M1: q
�

(z|x) = N (z|µ
�

(x), diag(�2
�

(x))), (3)

M2: q
�

(z|y,x) = N (z|µ
�

(y,x), diag(�2
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(x))); q
�

(y|x) = Cat(y|⇡
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where �
�

(x) is a vector of standard deviations, ⇡
�

(x) is a probability vector, and the functions
µ

�

(x), �
�

(x) and ⇡
�

(x) are represented as MLPs.

3.1.1 Latent Feature Discriminative Model Objective

For this model, the variational bound J (x) on the marginal likelihood for a single data point is:

log p
✓

(x) � E
q�(z|x) [log p✓(x|z)]�KL[q

�

(z|x)kp
✓

(z)] = �J (x), (5)

The inference network q
�

(z|x) (3) is used during training of the model using both the labelled and
unlabelled data sets. This approximate posterior is then used as a feature extractor for the labelled
data set, and the features used for training the classifier.

3.1.2 Generative Semi-supervised Model Objective

For this model, we have two cases to consider. In the first case, the label corresponding to a data
point is observed and the variational bound is a simple extension of equation (5):

log p
✓

(x, y)�E
q�(z|x,y) [log p✓(x|y, z) + log p

✓

(y) + log p(z)� log q
�

(z|x, y)]=�L(x, y), (6)

For the case where the label is missing, it is treated as a latent variable over which we perform
posterior inference and the resulting bound for handling data points with an unobserved label y is:

log p
✓

(x) � E
q�(y,z|x) [log p✓(x|y, z) + log p

✓

(y) + log p(z)� log q
�

(y, z|x)]

=

X
y

q
�

(y|x)(�L(x, y)) +H(q
�

(y|x)) = �U(x). (7)

The bound on the marginal likelihood for the entire dataset is now:

J =

X
(x,y)⇠epl

L(x, y) +
X

x⇠epu

U(x) (8)

The distribution q
�

(y|x) (4) for the missing labels has the form a discriminative classifier, and
we can use this knowledge to construct the best classifier possible as our inference model. This
distribution is also used at test time for predictions of any unseen data.

In the objective function (8), the label predictive distribution q
�

(y|x) contributes only to the second
term relating to the unlabelled data, which is an undesirable property if we wish to use this distribu-
tion as a classifier. Ideally, all model and variational parameters should learn in all cases. To remedy
this, we add a classification loss to (8), such that the distribution q

�

(y|x) also learns from labelled
data. The extended objective function is:

J ↵

= J + ↵ · Eepl(x,y) [� log q
�

(y|x)] , (9)

where the hyper-parameter ↵ controls the relative weight between generative and purely discrimina-
tive learning. We use ↵ = 0.1 ·N in all experiments. While we have obtained this objective function
by motivating the need for all model components to learn at all times, the objective 9 can also be
derived directly using the variational principle by instead performing inference over the parameters
⇡ of the categorical distribution, using a symmetric Dirichlet prior over these parameterss.

3.2 Optimisation

The bounds in equations (5) and (9) provide a unified objective function for optimisation of both
the parameters ✓ and � of the generative and inference models, respectively. This optimisation can
be done jointly, without resort to the variational EM algorithm, by using deterministic reparameter-
isations of the expectations in the objective function, combined with Monte Carlo approximation –
referred to in previous work as stochastic gradient variational Bayes (SGVB) (Kingma and Welling,
2014) or as stochastic backpropagation (Rezende et al., 2014). We describe the core strategy for the
latent-feature discriminative model M1, since the same computations are used for the generative
semi-supervised model.

When the prior p(z) is a spherical Gaussian distribution p(z) = N (z|0, I) and the variational distri-
bution q

�

(z|x) is also a Gaussian distribution as in (3), the KL term in equation (5) can be computed
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3.1.1 Latent Feature Discriminative Model Objective
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(z|x) (3) is used during training of the model using both the labelled and
unlabelled data sets. This approximate posterior is then used as a feature extractor for the labelled
data set, and the features used for training the classifier.

3.1.2 Generative Semi-supervised Model Objective

For this model, we have two cases to consider. In the first case, the label corresponding to a data
point is observed and the variational bound is a simple extension of equation (5):
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For the case where the label is missing, it is treated as a latent variable over which we perform
posterior inference and the resulting bound for handling data points with an unobserved label y is:
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The distribution q
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(y|x) (4) for the missing labels has the form a discriminative classifier, and
we can use this knowledge to construct the best classifier possible as our inference model. This
distribution is also used at test time for predictions of any unseen data.

In the objective function (8), the label predictive distribution q
�

(y|x) contributes only to the second
term relating to the unlabelled data, which is an undesirable property if we wish to use this distribu-
tion as a classifier. Ideally, all model and variational parameters should learn in all cases. To remedy
this, we add a classification loss to (8), such that the distribution q
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(y|x) also learns from labelled
data. The extended objective function is:

J ↵
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where the hyper-parameter ↵ controls the relative weight between generative and purely discrimina-
tive learning. We use ↵ = 0.1 ·N in all experiments. While we have obtained this objective function
by motivating the need for all model components to learn at all times, the objective 9 can also be
derived directly using the variational principle by instead performing inference over the parameters
⇡ of the categorical distribution, using a symmetric Dirichlet prior over these parameterss.

3.2 Optimisation

The bounds in equations (5) and (9) provide a unified objective function for optimisation of both
the parameters ✓ and � of the generative and inference models, respectively. This optimisation can
be done jointly, without resort to the variational EM algorithm, by using deterministic reparameter-
isations of the expectations in the objective function, combined with Monte Carlo approximation –
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Semi-supervised MNIST classification results

• Combination model M1+M2 shows dramatic improvement: 

• Full MNIST test error (non-convolutional): 0.96% 
- for comparison, current SOTA: 0.61%
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Table 1: Benchmark results of semi-supervised classification on MNIST with few labels.

N NN CNN TSVM CAE MTC AtlasRBF M1+TSVM M2 M1+M2
100 25.81 22.98 16.81 13.47 12.03 8.10 (± 0.95) 11.82 (± 0.25) 11.97 (± 1.71) 3.33 (± 0.14)
600 11.44 7.68 6.16 6.3 5.13 – 5.72 (± 0.049) 4.94 (± 0.13) 2.59 (± 0.05)
1000 10.7 6.45 5.38 4.77 3.64 3.68 (± 0.12) 4.24 (± 0.07) 3.60 (± 0.56) 2.40 (± 0.02)
3000 6.04 3.35 3.45 3.22 2.57 – 3.49 (± 0.04) 3.92 (± 0.63) 2.18 (± 0.04)

4 Experimental Results

Open source code, with which the most important results and figures can be reproduced, is avail-
able at http://github.com/dpkingma/nips14-ssl. For the latest experimental results,
please see http://arxiv.org/abs/1406.5298.

4.1 Benchmark Classification
We test performance on the standard MNIST digit classification benchmark. The data set for semi-
supervised learning is created by splitting the 50,000 training points between a labelled and unla-
belled set, and varying the size of the labelled from 100 to 3000. We ensure that all classes are
balanced when doing this, i.e. each class has the same number of labelled points. We create a num-
ber of data sets using randomised sampling to confidence bounds for the mean performance under
repeated draws of data sets.

For model M1 we used a 50-dimensional latent variable z. The MLPs that form part of the generative
and inference models were constructed with two hidden layers, each with 600 hidden units, using
softplus log(1+ex) activation functions. On top, a transductive SVM (TSVM) was learned on values
of z inferred with q

�

(z|x). For model M2 we also used 50-dimensional z. In each experiment, the
MLPs were constructed with one hidden layer, each with 500 hidden units and softplus activation
functions. In case of SVHN and NORB, we found it helpful to pre-process the data with PCA.
This makes the model one level deeper, and still optimizes a lower bound on the likelihood of the
unprocessed data.

Table 1 shows classification results. We compare to a broad range of existing solutions in semi-
supervised learning, in particular to classification using nearest neighbours (NN), support vector
machines on the labelled set (SVM), the transductive SVM (TSVM), and contractive auto-encoders
(CAE). Some of the best results currently are obtained by the manifold tangent classifier (MTC)
(Rifai et al., 2011) and the AtlasRBF method (Pitelis et al., 2014). Unlike the other models in this
comparison, our models are fully probabilistic but have a cost in the same order as these alternatives.

Results: The latent-feature discriminative model (M1) performs better than other models based
on simple embeddings of the data, demonstrating the effectiveness of the latent space in providing
robust features that allow for easier classification. By combining these features with a classification
mechanism directly in the same model, as in the conditional generative model (M2), we are able to
get similar results without a separate TSVM classifier.

However, by far the best results were obtained using the stack of models M1 and M2. This com-
bined model provides accurate test-set predictions across all conditions, and easily outperforms the
previously best methods. We also tested this deep generative model for supervised learning with
all available labels, and obtain a test-set performance of 0.96%, which is among the best published
results for this permutation-invariant MNIST classification task.

4.2 Conditional Generation
The conditional generative model can be used to explore the underlying structure of the data, which
we demonstrate through two forms of analogical reasoning. Firstly, we demonstrate style and con-
tent separation by fixing the class label y, and then varying the latent variables z over a range of
values. Figure 1 shows three MNIST classes in which, using a trained model with two latent vari-
ables, and the 2D latent variable varied over a range from -5 to 5. In all cases, we see that nearby
regions of latent space correspond to similar writing styles, independent of the class; the left region
represents upright writing styles, while the right-side represents slanted styles.

As a second approach, we use a test image and pass it through the inference network to infer a
value of the latent variables corresponding to that image. We then fix the latent variables z to this
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Conditional generation using M2
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(a) Handwriting styles for MNIST obtained by fixing the class label and varying the 2D latent variable z

(b) MNIST analogies (c) SVHN analogies

Figure 1: (a) Visualisation of handwriting styles learned by the model with 2D z-space. (b,c)
Analogical reasoning with generative semi-supervised models using a high-dimensional z-space.
The leftmost columns show images from the test set. The other columns show analogical fantasies
of x by the generative model, where the latent variable z of each row is set to the value inferred from
the test-set image on the left by the inference network. Each column corresponds to a class label y.

Table 2: Semi-supervised classification on
the SVHN dataset with 1000 labels.

KNN TSVM M1+KNN M1+TSVM M1+M2
77.93 66.55 65.63 54.33 36.02

(± 0.08) (± 0.10) (± 0.15) (± 0.11) (± 0.10)

Table 3: Semi-supervised classification on
the NORB dataset with 1000 labels.

KNN TSVM M1+KNN M1+TSVM
78.71 26.00 65.39 18.79

(± 0.02) (± 0.06) (± 0.09) (± 0.05)

value, vary the class label y, and simulate images from the generative model corresponding to that
combination of z and y. This again demonstrate the disentanglement of style from class. Figure 1
shows these analogical fantasies for the MNIST and SVHN datasets (Netzer et al., 2011). The
SVHN data set is a far more complex data set than MNIST, but the model is able to fix the style of
house number and vary the digit that appears in that style well. These generations represent the best
current performance in simulation from generative models on these data sets.

The model used in this way also provides an alternative model to the stochastic feed-forward net-
works (SFNN) described by Tang and Salakhutdinov (2013). The performance of our model sig-
nificantly improves on SFNN, since instead of an inefficient Monte Carlo EM algorithm relying on
importance sampling, we are able to perform efficient joint inference that is easy to scale.

4.3 Image Classification
We demonstrate the performance of image classification on the SVHN, and NORB image data sets.
Since no comparative results in the semi-supervised setting exists, we perform nearest-neighbour
and TSVM classification with RBF kernels and compare performance on features generated by
our latent-feature discriminative model to the original features. The results are presented in tables 2
and 3, and we again demonstrate the effectiveness of our approach for semi-supervised classification.
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VRNN: Model Structure
• Variational recurrent neural network (VRNN) is a recurrent 

(conditional) application of the VAE at every time-step. 

• Recurrence is mediated through the recurrent hidden layer. 

• Motivation: latent variables are a more natural space to encode 
stochasticity, standard RNNs encode noise in input.
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(a) Prior (b) Generation (c) Recurrence (d) Inference (e) VRNN

Figure 1: Graphical illustrations of each operation in the proposed VRNN: (a) computing sequential
priors using Eq. (5); (b) generating function using Eq. (6); (c) updating the recurrence of the RNN
part using Eq. (7); (d) inference of the approximate posterior using Eq. (9); (e) overall computational
paths of the VRNN.
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As in the standard VAE, we learn the generative and inference models jointly by maximizing the
variational lower bound with respect to their parameters. The schematic view of the VRNN is
shown in Fig. 1, each of (a)–(d) operation corresponds to each of Eqs. (5),(6),(7),(9). The proposed
network applies the operation (a), hence, it has a sequential prior (VRNN, see Eq. (5)). The variant
of the VRNN which does not apply the operation (a), then the prior is independent across timesteps
(VRNN-I). STORN [2] model can be considered an instance of the VRNN-I model family. In fact,
STORN makes further restrictions on the dependency structure of the approximate inference model.
We include this version of the model (VRNN-I) in our experimental evaluation in order to directly
study the impact of including the temporal dependency structure in the prior (sequential prior) over
the latent random variables.

4 Experiment Settings

We evaluate the proposed VRNN model on two tasks: (1) modelling natural speech directly from
the raw audio waveform; (2) modelling the dynamic handwriting process.

Speech modelling We train the models to directly model raw audio, represented as a sequence
of 200-dimensional frames. Each frame corresponds to the real-valued amplitudes of 200 consecu-
tive raw acoustic samples. Note that this is unlike the conventional approach to modelling speech,
often used in speech synthesis where models are expressed over representations such as spectral
features [see, e.g., 16, 3, 12].

We evaluate the models on the following four speech datasets:
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VRNN: Model Structure

• Variational recurrent neural network (VRNN) is a recurrent 
(conditional) application of the VAE at every time-step. 

• Recurrence is mediated through the recurrent hidden layer.
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Figure 1: Graphical illustrations of each operation in the proposed VRNN: (a) computing sequential
priors using Eq. (5); (b) generating function using Eq. (6); (c) updating the recurrence of the RNN
part using Eq. (7); (d) inference of the approximate posterior using Eq. (9); (e) overall computational
paths of the VRNN.
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VRNN: Prior on zt

• At time step t, the latent variable zt is generated as a 
function of the recurrent state at time step t-1.
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VRNN: Generation

• Generation of xt uses the current latent variable zt and 
the previous recurrent state ht-1.
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Generative model 
factorizes over time
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VRNN: Recurrence

• Recurrent state ht is a function of the previous recurrent 
state, the current observation ht and the current latent 
variable ht
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VRNN: Inference

• Approximate posterior: 

• where the history is summarized by the recurrent hidden 
state ht-1.

28

(a) Prior (b) Generation (c) Recurrence (d) Inference (e) VRNN

Figure 1: Graphical illustrations of each operation in the proposed VRNN: (a) computing sequential
priors using Eq. (5); (b) generating function using Eq. (6); (c) updating the recurrence of the RNN
part using Eq. (7); (d) inference of the approximate posterior using Eq. (9); (e) overall computational
paths of the VRNN.
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As in the standard VAE, we learn the generative and inference models jointly by maximizing the
variational lower bound with respect to their parameters. The schematic view of the VRNN is
shown in Fig. 1, each of (a)–(d) operation corresponds to each of Eqs. (5),(6),(7),(9). The proposed
network applies the operation (a), hence, it has a sequential prior (VRNN, see Eq. (5)). The variant
of the VRNN which does not apply the operation (a), then the prior is independent across timesteps
(VRNN-I). STORN [2] model can be considered an instance of the VRNN-I model family. In fact,
STORN makes further restrictions on the dependency structure of the approximate inference model.
We include this version of the model (VRNN-I) in our experimental evaluation in order to directly
study the impact of including the temporal dependency structure in the prior (sequential prior) over
the latent random variables.

4 Experiment Settings

We evaluate the proposed VRNN model on two tasks: (1) modelling natural speech directly from
the raw audio waveform; (2) modelling the dynamic handwriting process.

Speech modelling We train the models to directly model raw audio, represented as a sequence
of 200-dimensional frames. Each frame corresponds to the real-valued amplitudes of 200 consecu-
tive raw acoustic samples. Note that this is unlike the conventional approach to modelling speech,
often used in speech synthesis where models are expressed over representations such as spectral
features [see, e.g., 16, 3, 12].

We evaluate the models on the following four speech datasets:

5
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VRNN: Learning

• Learning is accomplished via gradient backpropagation: 

- through the decoder and encoder, as in standard VAE. 
- and through the recurrent connections, as in the standard RNN.
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(a) Prior (b) Generation (c) Recurrence (d) Inference (e) VRNN

Figure 1: Graphical illustrations of each operation in the proposed VRNN: (a) computing sequential
priors using Eq. (5); (b) generating function using Eq. (6); (c) updating the recurrence of the RNN
part using Eq. (7); (d) inference of the approximate posterior using Eq. (9); (e) overall computational
paths of the VRNN.

Inference In a similar fashion, the approximate posterior will not only be a function of x
t

but also
of h

t�1 following the equation:
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similarly µ
z,t

and �
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denote the parameter set of the approximate posterior. We can notice that
the encoding of the approximate posterior and the decoding for generation are also tied through the
hidden state h

t�1. We can also observe that this results in the factorization
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As in the standard VAE, we learn the generative and inference models jointly by maximizing the
variational lower bound with respect to their parameters. The schematic view of the VRNN is
shown in Fig. 1, each of (a)–(d) operation corresponds to each of Eqs. (5),(6),(7),(9). The proposed
network applies the operation (a), hence, it has a sequential prior (VRNN, see Eq. (5)). The variant
of the VRNN which does not apply the operation (a), then the prior is independent across timesteps
(VRNN-I). STORN [2] model can be considered an instance of the VRNN-I model family. In fact,
STORN makes further restrictions on the dependency structure of the approximate inference model.
We include this version of the model (VRNN-I) in our experimental evaluation in order to directly
study the impact of including the temporal dependency structure in the prior (sequential prior) over
the latent random variables.

4 Experiment Settings

We evaluate the proposed VRNN model on two tasks: (1) modelling natural speech directly from
the raw audio waveform; (2) modelling the dynamic handwriting process.

Speech modelling We train the models to directly model raw audio, represented as a sequence
of 200-dimensional frames. Each frame corresponds to the real-valued amplitudes of 200 consecu-
tive raw acoustic samples. Note that this is unlike the conventional approach to modelling speech,
often used in speech synthesis where models are expressed over representations such as spectral
features [see, e.g., 16, 3, 12].

We evaluate the models on the following four speech datasets:
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VRNN: Results

• Results on speech synthesis and handwriting synthesis 

• Using stochastic latent variables allows for a more effective model 
than adding the stochasticity in the input
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Table 1: Average log-probability on the test (or validation) set of each task.
Speech modelling Handwriting

Models Blizzard TIMIT Onomatopoeia Accent IAM-OnDB
RNN-Gauss 3539 -1900 -984 -1293 1016
RNN-GMM 7413 26643 18865 3453 1358

VRNN-I-Gauss � 8933 � 28340 � 19053 � 3843 � 1332
⇡ 9188 ⇡ 29639 ⇡ 19638 ⇡ 4180 ⇡ 1353

VRNN-Gauss � 9223 � 28805 � 20721 � 3952 � 1337
⇡ 9516 ⇡ 30235 ⇡ 21332 ⇡ 4223 ⇡ 1354

VRNN-GMM � 9107 � 28982 � 20849 � 4140 � 1384
⇡ 9392 ⇡ 29604 ⇡ 21219 ⇡ 4319 ⇡ 1384

1. Blizzard: This text-to-speech dataset made available by the Blizzard Challenge 2013 con-
tains 300 hours of English spoken by a single female speaker [9].

2. TIMIT: This most widely used datasets for benchmarking speech recognition systems con-
tains 6, 300 English sentences ready by 630 speakers.

3. Onomatopoeia1: Onomatopoeia is a set of 6, 738 non-linguistic human-made sounds such
as coughing, screaming, laughing and shouting, recorded from 51 voice actors.

4. Accent: This dataset contains English paragraphs read by 2, 046 different native and non-
native English speakers [17].

For the Blizzard and Accent datasets, we process the data so that each sample duration is 0.5s (the
sampling frequency used is 16kHz). We use truncated backpropagation through time and initialize
the hidden state of the RNN part with the final hidden state of previous minibatch, resetting to a
zero-vector every four updates. Excluding TIMIT, the rest of the datasets do not have predefined
train/test splits. We shuffle and divide the data into train/validation/test splits using a fraction of
0.9/0.05/0.05. See supplementary material for more details on processing datasets and experimen-
tal settings.

Handwriting Generation We let each model learn a sequence of (x, y)-coordinates together with
binary indicators of pen up / pen down, using the IAM-OnDB dataset which consists of 13, 040
handwritten lines written by 500 writers [13]. We preprocess and split the dataset as done in [7].

Preprocessing and Training The only preprocessing used in the experiments is normalizing each
vector of a sequence by using the global mean and standard deviation computed from the training
set. We trained each model by the stochastic gradient descent on the negative log-likelihood using
the recently proposed Adam optimizer [10], with learning rate of 0.001 for TIMIT and Accent,
0.0003 for the rest. We used minibatch size of 128 for Blizzard and Accent, and 64 for the rest. The
final model was chosen with early-stopping the training based on the validation performance.

Models We compare the proposed VRNN with a standard RNN. For each architecture, we evaluate
two different output functions: unimodal Gaussian distribution (Gauss) and the Gaussian mixture
model (GMM). For each task, we conduct additional set of experiments of VRNN without sequential
prior (VRNN-I).

We fix the size of the RNN of each model to have single recurrent hidden layer with 2000 LSTM
units (in the case of Blizzard, 4000 and for IAM-OnDB, 1200). All the '

⌧

in Eqs. (5)–(9) have four
hidden layers using rectified linear units (for IAM-OnDB, we use single hidden layer).

The standard RNN models (which begin with RNN-) only have '

x

⌧

and '

dec
⌧

, while the proposed
VRNN models have '

z

⌧

, 'enc
⌧

and '

prior
⌧

as well. For standard RNNs, 'x

⌧

is the feature extractor, and
'

dec
⌧

is the generating function. The standard RNN means that it uses Eq.(1) to update its internal
hidden state. For the RNN-GMM and VRNNs, we match the number of parameters of each output
function as closely as possible to an output function of an RNN-Gauss model having 600 rectified

1 This dataset has been provided by Ubisoft.

6
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VRNN: Speech synthesis
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(a) Ground Truth (b) RNN-GMM (c) VRNN-Gauss

Figure 3: Typical training examples and generated samples from RNN-GMM and VRNN-Gauss.
Top three rows show the global waveforms while the bottom three rows show more zoomed-in
waveforms. Samples from (b) RNN-GMM contain high frequency noise, (c) VRNN-Gauss gener-
ates samples with less noise. We excluded RNN-Gauss because the samples are almost close to pure
noise.

(a) Ground Truth (b) RNN-Gauss (c) RNN-GMM (d) VRNN-GMM

Figure 4: Handwriting samples: (a) ground truth examples from the training examples; uncondi-
tionally generated handwritings from (b) RNN-Gauss, (c) RNN-GMM and (d) VRNN-GMM. The
VRNN-GMM retains writing styles from beginning to end while RNN-Gauss and RNN-GMM tend
to change style during the generation process. This is possibly because sequential latent random
variables guide the model to generate samples with a consistent writing style.

6 Conclusion

We propose a novel model of complex sequential data that incorporates latent random variables
into a recurrent neural network (RNN) architecture. We show that by modelling the dependencies
between these latent random variables, we are able to provide a model that naturally reflects the
kinds of variability seen in many sequential processes.

Our experiments focus on unconditional speech generation involving various real-valued datasets as
well as unconstrained handwriting generation. We find the introduction of latent random variables

8
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VRNN: KL Divergence

• The KL divergence tends to be fairly sparse and seems to be most 
active at motif transitions.
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Figure 2: The top row represents the difference �

t

between µ
z,t

and µ
z,t�1. The middle row

represents the dominant KL divergence values shown in temporal order. The bottom row shows
corresponding waveforms.

linear units for any hidden layer that belongs to either 'x

⌧

or 'dec
⌧

(800 for Blizzard). Note that the
models using GMM (RNN-GMM & VRNN-GMM) have 20 mixture components.

For qualitative analysis for speech, we train larger models to generate sequences, but again control
the number of parameters. For all models, we use stacked RNNs with three recurrent hidden layers,
each layer contains 3000 LSTM units. For the non-RNN parts, we match the number of parameters
for the output function to an output function of RNN-Gauss model having 3200 rectified linear units
for all the hidden layers that belong to '

x

⌧

and '

dec
⌧

.

5 Results and Analysis

We evaluate the average log-probability of test examples assigned by each model and report in
Table 1. With RNN-Gauss and RNN-GMM, we report exact log-probabilities, while in the case of
VRNNs we report the variational lower bound (given with � sign, see Eq. (4)) and approximated
marginal log-likelihood (given with ⇡ sign) based on importance sampling using 40 samples as in
Rezende et al. [15]. In all cases, higher scores are better. Our results show the proposed VRNNs have
better log-probability performances which support our claim that latent random variables are helpful
when modelling comlex sequences. VRNN-Gauss performs well (compared to VRNN-GMM) using
only an unimodal output function, which does not happen in the standard RNN case.

Latent Space Analysis After observing the improvements achieved by the proposed VRNN, we
were curious on what kind of dynamics of the latent random variables have been learned by the
model. In Fig. 2, we show analysis of the latent random variables. We let the VRNN to read
some unseen examples and observe changes in the states of latent random variables. We compute
�

t

=
P

j

(µj

z,t

� µj

z,t�1)
2 at every timestep t and plot the results on the topmost row of Fig. 2. We

can clearly observe the peaks of �
t

, whenever there is a transition in the waveform (shown at the
bottom row), reflecting the changes of modality in the RNN dynamics. The middle row shows the
KL divergence computed between the approximate posterior and the sequential prior. When there
is a transition, the KL divergence tends to grow (white is high).

Speech Generation We generate waveforms with 2.0s duration from the models that were trained
on Blizzard. From Fig. 3, we can clearly see that the waveforms from the VRNN-Gauss are much
less noisy and have less spurious peaks than those from the RNN-GMM. We suggest that the small
amount of noise apparent in the RNN-GMM model is a consequence of the compromise these mod-
els must make between representing a clean signal consistently to the training data and encoding
sufficient input variability to capture the variations across data examples. The latent random vari-
able models (both VRNN-I and VRNN) can avoid this compromise by adding variability in the
latent space which can always be mapped to a point close to a relatively clean sample.

Handwriting Generation Visual inspection of generated handwriting from the trained models
reveals that the proposed VRNN tends to generate with more diverse and consistent writing styles,
when compared to the RNN-GMM. Fig 4 depicts handwriting from the training examples, RNN-
Gauss, RNN-GMM and VRNN-GMM.

7

KL divergence:

|µz,t − µz,t−1|

input waveform:
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VRNN: Writing synthesis

• Predicting a sequence of (x,y) locations of the next destination of the 
pen.
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(a) Ground Truth (b) RNN-GMM (c) VRNN-Gauss

Figure 3: Typical training examples and generated samples from RNN-GMM and VRNN-Gauss.
Top three rows show the global waveforms while the bottom three rows show more zoomed-in
waveforms. Samples from (b) RNN-GMM contain high frequency noise, (c) VRNN-Gauss gener-
ates samples with less noise. We excluded RNN-Gauss because the samples are almost close to pure
noise.

(a) Ground Truth (b) RNN-Gauss (c) RNN-GMM (d) VRNN-GMM

Figure 4: Handwriting samples: (a) ground truth examples from the training examples; uncondi-
tionally generated handwritings from (b) RNN-Gauss, (c) RNN-GMM and (d) VRNN-GMM. The
VRNN-GMM retains writing styles from beginning to end while RNN-Gauss and RNN-GMM tend
to change style during the generation process. This is possibly because sequential latent random
variables guide the model to generate samples with a consistent writing style.

6 Conclusion

We propose a novel model of complex sequential data that incorporates latent random variables
into a recurrent neural network (RNN) architecture. We show that by modelling the dependencies
between these latent random variables, we are able to provide a model that naturally reflects the
kinds of variability seen in many sequential processes.

Our experiments focus on unconditional speech generation involving various real-valued datasets as
well as unconstrained handwriting generation. We find the introduction of latent random variables

8
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DRAW: Deep Recurrent Attentive Writer

• Augments the encoder and decoder with recurrent 
neural networks. 

• Inference and generation defined by a sequential 
process, even for non-sequential data. 

• Adds an attention mechanism over the input to define a 
sequential process.
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Variational Autoencoder Recap

36

sample

decoder 
MLP

encoder 
MLP

read

x

Generative (decoder) model
Inference (encoder) model

q(z | x)

z

p(x | z)



IFT6266 Hiver 2017  —  Aaron Courville

DRAW Model
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• Simplest instantiation of DRAW is without an attention 
mechanism. 

• Entire input is passed to the encoder at every time-step 

• Decoder writes to entire canvas at every time-step

DRAW MNIST Generation

38

DRAW: A Recurrent Neural Network For Image Generation

Time

Figure 7. MNIST generation sequences for DRAW without at-
tention. Notice how the network first generates a very blurry im-
age that is subsequently refined.

with attention it constructs the digit by tracing the lines—
much like a person with a pen.

4.3. MNIST Generation with Two Digits

The main motivation for using an attention-based genera-
tive model is that large images can be built up iteratively,
by adding to a small part of the image at a time. To test
this capability in a controlled fashion, we trained DRAW
to generate images with two 28 ⇥ 28 MNIST images cho-
sen at random and placed at random locations in a 60 ⇥ 60

black background. In cases where the two digits overlap,
the pixel intensities were added together at each point and
clipped to be no greater than one. Examples of generated
data are shown in Fig. 8. The network typically generates
one digit and then the other, suggesting an ability to recre-
ate composite scenes from simple pieces.

4.4. Street View House Number Generation

MNIST digits are very simplistic in terms of visual struc-
ture, and we were keen to see how well DRAW performed
on natural images. Our first natural image generation ex-
periment used the multi-digit Street View House Numbers
dataset (Netzer et al., 2011). We used the same preprocess-
ing as (Goodfellow et al., 2013), yielding a 64 ⇥ 64 house
number image for each training example. The network was
then trained using 54 ⇥ 54 patches extracted at random lo-
cations from the preprocessed images. The SVHN training
set contains 231,053 images, and the validation set contains
4,701 images.

The house number images generated by the network are

Figure 8. Generated MNIST images with two digits.

Figure 9. Generated SVHN images. The rightmost column
shows the training images closest (in L

2 distance) to the gener-
ated images beside them. Note that the two columns are visually
similar, but the numbers are generally different.

highly realistic, as shown in Figs. 9 and 10. Fig. 11 reveals
that, despite the long training time, the DRAW network un-
derfit the SVHN training data.

4.5. Generating CIFAR Images

The most challenging dataset we applied DRAW to was
the CIFAR-10 collection of natural images (Krizhevsky,

DRAW: A Recurrent Neural Network For Image Generation

3.1. Reading and Writing Without Attention

In the simplest instantiation of DRAW the entire input im-
age is passed to the encoder at every time-step, and the de-
coder modifies the entire canvas matrix at every time-step.
In this case the read and write operations reduce to

read(x, x̂

t

, h

dec
t�1

) = [x, x̂

t

] (17)

write(hdec
t

) = W (h

dec
t

) (18)

However this approach does not allow the encoder to fo-
cus on only part of the input when creating the latent dis-
tribution; nor does it allow the decoder to modify only a
part of the canvas vector. In other words it does not pro-
vide the network with an explicit selective attention mech-
anism, which we believe to be crucial to large scale image
generation. We refer to the above configuration as “DRAW
without attention”.

3.2. Selective Attention Model

To endow the network with selective attention without sac-
rificing the benefits of gradient descent training, we take in-
spiration from the differentiable attention mechanisms re-
cently used in handwriting synthesis (Graves, 2013) and
Neural Turing Machines (Graves et al., 2014). Unlike
the aforementioned works, we consider an explicitly two-
dimensional form of attention, where an array of 2D Gaus-
sian filters is applied to the image, yielding an image
‘patch’ of smoothly varying location and zoom. This con-
figuration, which we refer to simply as “DRAW”, some-
what resembles the affine transformations used in computer
graphics-based autoencoders (Tieleman, 2014).

As illustrated in Fig. 3, the N ⇥N grid of Gaussian filters is
positioned on the image by specifying the co-ordinates of
the grid centre and the stride distance between adjacent fil-
ters. The stride controls the ‘zoom’ of the patch; that is, the
larger the stride, the larger an area of the original image will
be visible in the attention patch, but the lower the effective
resolution of the patch will be. The grid centre (g

X

, g

Y

)

and stride � (both of which are real-valued) determine the
mean location µ

i

X

, µ

j

Y

of the filter at row i, column j in the
patch as follows:

µ

i

X

= g

X

+ (i � N/2 � 0.5) � (19)

µ

j

Y

= g

Y

+ (j � N/2 � 0.5) � (20)

Two more parameters are required to fully specify the at-
tention model: the isotropic variance �

2 of the Gaussian
filters, and a scalar intensity � that multiplies the filter re-
sponse. Given an A ⇥ B input image x, all five attention
parameters are dynamically determined at each time step

�

g

Y
{

{

g

X

{

Figure 3. Left: A 3⇥ 3 grid of filters superimposed on an image.
The stride (�) and centre location (gX , gY ) are indicated. Right:
Three N ⇥ N patches extracted from the image (N = 12). The
green rectangles on the left indicate the boundary and precision
(�) of the patches, while the patches themselves are shown to the
right. The top patch has a small � and high �, giving a zoomed-in
but blurry view of the centre of the digit; the middle patch has
large � and low �, effectively downsampling the whole image;
and the bottom patch has high � and �.

via a linear transformation of the decoder output h

dec :
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where the variance, stride and intensity are emitted in the
log-scale to ensure positivity. The scaling of g

X

, g

Y

and �

is chosen to ensure that the initial patch (with a randomly
initialised network) roughly covers the whole input image.

Given the attention parameters emitted by the decoder, the
horizontal and vertical filterbank matrices F

X

and F

Y

(di-
mensions N ⇥ A and N ⇥ B respectively) are defined as
follows:
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where (i, j) is a point in the attention patch, (a, b) is a point
in the input image, and Z

x

, Z

y

are normalisation constants
that ensure that

P
a

F

X

[i, a] = 1 and
P

b

F

Y

[j, b] = 1.
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DRAW Attention Mechanism

39

DRAW: A Recurrent Neural Network For Image Generation

3.1. Reading and Writing Without Attention

In the simplest instantiation of DRAW the entire input im-
age is passed to the encoder at every time-step, and the de-
coder modifies the entire canvas matrix at every time-step.
In this case the read and write operations reduce to

read(x, x̂
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) = [x, x̂
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] (17)

write(hdec
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) = W (h
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However this approach does not allow the encoder to fo-
cus on only part of the input when creating the latent dis-
tribution; nor does it allow the decoder to modify only a
part of the canvas vector. In other words it does not pro-
vide the network with an explicit selective attention mech-
anism, which we believe to be crucial to large scale image
generation. We refer to the above configuration as “DRAW
without attention”.

3.2. Selective Attention Model

To endow the network with selective attention without sac-
rificing the benefits of gradient descent training, we take in-
spiration from the differentiable attention mechanisms re-
cently used in handwriting synthesis (Graves, 2013) and
Neural Turing Machines (Graves et al., 2014). Unlike
the aforementioned works, we consider an explicitly two-
dimensional form of attention, where an array of 2D Gaus-
sian filters is applied to the image, yielding an image
‘patch’ of smoothly varying location and zoom. This con-
figuration, which we refer to simply as “DRAW”, some-
what resembles the affine transformations used in computer
graphics-based autoencoders (Tieleman, 2014).

As illustrated in Fig. 3, the N ⇥N grid of Gaussian filters is
positioned on the image by specifying the co-ordinates of
the grid centre and the stride distance between adjacent fil-
ters. The stride controls the ‘zoom’ of the patch; that is, the
larger the stride, the larger an area of the original image will
be visible in the attention patch, but the lower the effective
resolution of the patch will be. The grid centre (g

X

, g

Y

)

and stride � (both of which are real-valued) determine the
mean location µ

i

X

, µ

j

Y

of the filter at row i, column j in the
patch as follows:
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+ (i � N/2 � 0.5) � (19)
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Y
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Two more parameters are required to fully specify the at-
tention model: the isotropic variance �

2 of the Gaussian
filters, and a scalar intensity � that multiplies the filter re-
sponse. Given an A ⇥ B input image x, all five attention
parameters are dynamically determined at each time step
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Figure 3. Left: A 3⇥ 3 grid of filters superimposed on an image.
The stride (�) and centre location (gX , gY ) are indicated. Right:
Three N ⇥ N patches extracted from the image (N = 12). The
green rectangles on the left indicate the boundary and precision
(�) of the patches, while the patches themselves are shown to the
right. The top patch has a small � and high �, giving a zoomed-in
but blurry view of the centre of the digit; the middle patch has
large � and low �, effectively downsampling the whole image;
and the bottom patch has high � and �.
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where the variance, stride and intensity are emitted in the
log-scale to ensure positivity. The scaling of g
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is chosen to ensure that the initial patch (with a randomly
initialised network) roughly covers the whole input image.
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where (i, j) is a point in the attention patch, (a, b) is a point
in the input image, and Z

x

, Z

y

are normalisation constants
that ensure that

P
a
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X

[i, a] = 1 and
P

b

F

Y

[j, b] = 1.

• DRAW can use a differentiable 
attention mechanism. 

• Attention uses recurrence (via the 
decoder) to select subsets of x for 
reading and writing. 

• Attention controls the extracted 
patch location, scale and blur.
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Figure 4. Zooming. Top Left: The original 100⇥75 image. Top
Middle: A 12⇥ 12 patch extracted with 144 2D Gaussian filters.
Top Right: The reconstructed image when applying transposed
filters on the patch. Bottom: Only two 2D Gaussian filters are
displayed. The first one is used to produce the top-left patch fea-
ture. The last filter is used to produce the bottom-right patch fea-
ture. By using different filter weights, the attention can be moved
to a different location.

3.3. Reading and Writing With Attention
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Note that the same filterbanks are used for both the image
and error image. For the write operation, a distinct set of
attention parameters �̂, ˆ
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the order of transposition is reversed, and the intensity is
inverted:
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where w

t

is the N ⇥ N writing patch emitted by h

dec
t

. For
colour images each point in the input and error image (and
hence in the reading and writing patches) is an RGB triple.
In this case the same reading and writing filters are used for
all three channels.

4. Experimental Results
We assess the ability of DRAW to generate realistic-
looking images by training on three datasets of progres-
sively increasing visual complexity: MNIST (LeCun et al.,
1998), Street View House Numbers (SVHN) (Netzer et al.,
2011) and CIFAR-10 (Krizhevsky, 2009). The images

generated by the network are always novel (not simply
copies of training examples), and are virtually indistin-
guishable from real data for MNIST and SVHN; the gener-
ated CIFAR images are somewhat blurry, but still contain
recognisable structure from natural scenes. The binarized
MNIST results substantially improve on the state of the art.
As a preliminary exercise, we also evaluate the 2D atten-
tion module of the DRAW network on cluttered MNIST
classification.

For all experiments, the model D(X|c
T

) of the input data
was a Bernoulli distribution with means given by �(c

T

).
For the MNIST experiments, the reconstruction loss from
Eq 9 was the usual binary cross-entropy term. For the
SVHN and CIFAR-10 experiments, the red, green and blue
pixel intensities were represented as numbers between 0
and 1, which were then interpreted as independent colour
emission probabilities. The reconstruction loss was there-
fore the cross-entropy between the pixel intensities and the
model probabilities. Although this approach worked well
in practice, it means that the training loss did not corre-
spond to the true compression cost of RGB images.

Network hyper-parameters for all the experiments are
presented in Table 3. The Adam optimisation algo-
rithm (Kingma & Ba, 2014) was used throughout. Ex-
amples of generation sequences for MNIST and SVHN
are provided in the accompanying video (https://www.
youtube.com/watch?v=Zt-7MI9eKEo).

4.1. Cluttered MNIST Classification

To test the classification efficacy of the DRAW attention
mechanism (as opposed to its ability to aid in image gener-
ation), we evaluate its performance on the 100 ⇥ 100 clut-
tered translated MNIST task (Mnih et al., 2014). Each im-
age in cluttered MNIST contains many digit-like fragments
of visual clutter that the network must distinguish from the
true digit to be classified. As illustrated in Fig. 5, having
an iterative attention model allows the network to progres-
sively zoom in on the relevant region of the image, and
ignore the clutter outside it.

Our model consists of an LSTM recurrent network that re-
ceives a 12 ⇥ 12 ‘glimpse’ from the input image at each
time-step, using the selective read operation defined in Sec-
tion 3.2. After a fixed number of glimpses the network uses
a softmax layer to classify the MNIST digit. The network
is similar to the recently introduced Recurrent Attention
Model (RAM) (Mnih et al., 2014), except that our attention
method is differentiable; we therefore refer to it as “Differ-
entiable RAM”.

The results in Table 1 demonstrate a significant improve-
ment in test error over the original RAM network. More-
over our model had only a single attention patch at each

DRAW: A Recurrent Neural Network For Image Generation

Figure 4. Zooming. Top Left: The original 100⇥75 image. Top
Middle: A 12⇥ 12 patch extracted with 144 2D Gaussian filters.
Top Right: The reconstructed image when applying transposed
filters on the patch. Bottom: Only two 2D Gaussian filters are
displayed. The first one is used to produce the top-left patch fea-
ture. The last filter is used to produce the bottom-right patch fea-
ture. By using different filter weights, the attention can be moved
to a different location.
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where w
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. For
colour images each point in the input and error image (and
hence in the reading and writing patches) is an RGB triple.
In this case the same reading and writing filters are used for
all three channels.

4. Experimental Results
We assess the ability of DRAW to generate realistic-
looking images by training on three datasets of progres-
sively increasing visual complexity: MNIST (LeCun et al.,
1998), Street View House Numbers (SVHN) (Netzer et al.,
2011) and CIFAR-10 (Krizhevsky, 2009). The images

generated by the network are always novel (not simply
copies of training examples), and are virtually indistin-
guishable from real data for MNIST and SVHN; the gener-
ated CIFAR images are somewhat blurry, but still contain
recognisable structure from natural scenes. The binarized
MNIST results substantially improve on the state of the art.
As a preliminary exercise, we also evaluate the 2D atten-
tion module of the DRAW network on cluttered MNIST
classification.
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pixel intensities were represented as numbers between 0
and 1, which were then interpreted as independent colour
emission probabilities. The reconstruction loss was there-
fore the cross-entropy between the pixel intensities and the
model probabilities. Although this approach worked well
in practice, it means that the training loss did not corre-
spond to the true compression cost of RGB images.

Network hyper-parameters for all the experiments are
presented in Table 3. The Adam optimisation algo-
rithm (Kingma & Ba, 2014) was used throughout. Ex-
amples of generation sequences for MNIST and SVHN
are provided in the accompanying video (https://www.
youtube.com/watch?v=Zt-7MI9eKEo).

4.1. Cluttered MNIST Classification

To test the classification efficacy of the DRAW attention
mechanism (as opposed to its ability to aid in image gener-
ation), we evaluate its performance on the 100 ⇥ 100 clut-
tered translated MNIST task (Mnih et al., 2014). Each im-
age in cluttered MNIST contains many digit-like fragments
of visual clutter that the network must distinguish from the
true digit to be classified. As illustrated in Fig. 5, having
an iterative attention model allows the network to progres-
sively zoom in on the relevant region of the image, and
ignore the clutter outside it.

Our model consists of an LSTM recurrent network that re-
ceives a 12 ⇥ 12 ‘glimpse’ from the input image at each
time-step, using the selective read operation defined in Sec-
tion 3.2. After a fixed number of glimpses the network uses
a softmax layer to classify the MNIST digit. The network
is similar to the recently introduced Recurrent Attention
Model (RAM) (Mnih et al., 2014), except that our attention
method is differentiable; we therefore refer to it as “Differ-
entiable RAM”.

The results in Table 1 demonstrate a significant improve-
ment in test error over the original RAM network. More-
over our model had only a single attention patch at each
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Figure 4. Zooming. Top Left: The original 100⇥75 image. Top
Middle: A 12⇥ 12 patch extracted with 144 2D Gaussian filters.
Top Right: The reconstructed image when applying transposed
filters on the patch. Bottom: Only two 2D Gaussian filters are
displayed. The first one is used to produce the top-left patch fea-
ture. The last filter is used to produce the bottom-right patch fea-
ture. By using different filter weights, the attention can be moved
to a different location.
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Note that the same filterbanks are used for both the image
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all three channels.
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guishable from real data for MNIST and SVHN; the gener-
ated CIFAR images are somewhat blurry, but still contain
recognisable structure from natural scenes. The binarized
MNIST results substantially improve on the state of the art.
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and 1, which were then interpreted as independent colour
emission probabilities. The reconstruction loss was there-
fore the cross-entropy between the pixel intensities and the
model probabilities. Although this approach worked well
in practice, it means that the training loss did not corre-
spond to the true compression cost of RGB images.

Network hyper-parameters for all the experiments are
presented in Table 3. The Adam optimisation algo-
rithm (Kingma & Ba, 2014) was used throughout. Ex-
amples of generation sequences for MNIST and SVHN
are provided in the accompanying video (https://www.
youtube.com/watch?v=Zt-7MI9eKEo).
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mechanism (as opposed to its ability to aid in image gener-
ation), we evaluate its performance on the 100 ⇥ 100 clut-
tered translated MNIST task (Mnih et al., 2014). Each im-
age in cluttered MNIST contains many digit-like fragments
of visual clutter that the network must distinguish from the
true digit to be classified. As illustrated in Fig. 5, having
an iterative attention model allows the network to progres-
sively zoom in on the relevant region of the image, and
ignore the clutter outside it.

Our model consists of an LSTM recurrent network that re-
ceives a 12 ⇥ 12 ‘glimpse’ from the input image at each
time-step, using the selective read operation defined in Sec-
tion 3.2. After a fixed number of glimpses the network uses
a softmax layer to classify the MNIST digit. The network
is similar to the recently introduced Recurrent Attention
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method is differentiable; we therefore refer to it as “Differ-
entiable RAM”.

The results in Table 1 demonstrate a significant improve-
ment in test error over the original RAM network. More-
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Figure 4. Zooming. Top Left: The original 100⇥75 image. Top
Middle: A 12⇥ 12 patch extracted with 144 2D Gaussian filters.
Top Right: The reconstructed image when applying transposed
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ture. By using different filter weights, the attention can be moved
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colour images each point in the input and error image (and
hence in the reading and writing patches) is an RGB triple.
In this case the same reading and writing filters are used for
all three channels.
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recognisable structure from natural scenes. The binarized
MNIST results substantially improve on the state of the art.
As a preliminary exercise, we also evaluate the 2D atten-
tion module of the DRAW network on cluttered MNIST
classification.

For all experiments, the model D(X|c
T

) of the input data
was a Bernoulli distribution with means given by �(c

T

).
For the MNIST experiments, the reconstruction loss from
Eq 9 was the usual binary cross-entropy term. For the
SVHN and CIFAR-10 experiments, the red, green and blue
pixel intensities were represented as numbers between 0
and 1, which were then interpreted as independent colour
emission probabilities. The reconstruction loss was there-
fore the cross-entropy between the pixel intensities and the
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are provided in the accompanying video (https://www.
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age in cluttered MNIST contains many digit-like fragments
of visual clutter that the network must distinguish from the
true digit to be classified. As illustrated in Fig. 5, having
an iterative attention model allows the network to progres-
sively zoom in on the relevant region of the image, and
ignore the clutter outside it.

Our model consists of an LSTM recurrent network that re-
ceives a 12 ⇥ 12 ‘glimpse’ from the input image at each
time-step, using the selective read operation defined in Sec-
tion 3.2. After a fixed number of glimpses the network uses
a softmax layer to classify the MNIST digit. The network
is similar to the recently introduced Recurrent Attention
Model (RAM) (Mnih et al., 2014), except that our attention
method is differentiable; we therefore refer to it as “Differ-
entiable RAM”.

The results in Table 1 demonstrate a significant improve-
ment in test error over the original RAM network. More-
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Figure 4. Zooming. Top Left: The original 100⇥75 image. Top
Middle: A 12⇥ 12 patch extracted with 144 2D Gaussian filters.
Top Right: The reconstructed image when applying transposed
filters on the patch. Bottom: Only two 2D Gaussian filters are
displayed. The first one is used to produce the top-left patch fea-
ture. The last filter is used to produce the bottom-right patch fea-
ture. By using different filter weights, the attention can be moved
to a different location.
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all three channels.

4. Experimental Results
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looking images by training on three datasets of progres-
sively increasing visual complexity: MNIST (LeCun et al.,
1998), Street View House Numbers (SVHN) (Netzer et al.,
2011) and CIFAR-10 (Krizhevsky, 2009). The images

generated by the network are always novel (not simply
copies of training examples), and are virtually indistin-
guishable from real data for MNIST and SVHN; the gener-
ated CIFAR images are somewhat blurry, but still contain
recognisable structure from natural scenes. The binarized
MNIST results substantially improve on the state of the art.
As a preliminary exercise, we also evaluate the 2D atten-
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classification.
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For the MNIST experiments, the reconstruction loss from
Eq 9 was the usual binary cross-entropy term. For the
SVHN and CIFAR-10 experiments, the red, green and blue
pixel intensities were represented as numbers between 0
and 1, which were then interpreted as independent colour
emission probabilities. The reconstruction loss was there-
fore the cross-entropy between the pixel intensities and the
model probabilities. Although this approach worked well
in practice, it means that the training loss did not corre-
spond to the true compression cost of RGB images.

Network hyper-parameters for all the experiments are
presented in Table 3. The Adam optimisation algo-
rithm (Kingma & Ba, 2014) was used throughout. Ex-
amples of generation sequences for MNIST and SVHN
are provided in the accompanying video (https://www.
youtube.com/watch?v=Zt-7MI9eKEo).

4.1. Cluttered MNIST Classification

To test the classification efficacy of the DRAW attention
mechanism (as opposed to its ability to aid in image gener-
ation), we evaluate its performance on the 100 ⇥ 100 clut-
tered translated MNIST task (Mnih et al., 2014). Each im-
age in cluttered MNIST contains many digit-like fragments
of visual clutter that the network must distinguish from the
true digit to be classified. As illustrated in Fig. 5, having
an iterative attention model allows the network to progres-
sively zoom in on the relevant region of the image, and
ignore the clutter outside it.

Our model consists of an LSTM recurrent network that re-
ceives a 12 ⇥ 12 ‘glimpse’ from the input image at each
time-step, using the selective read operation defined in Sec-
tion 3.2. After a fixed number of glimpses the network uses
a softmax layer to classify the MNIST digit. The network
is similar to the recently introduced Recurrent Attention
Model (RAM) (Mnih et al., 2014), except that our attention
method is differentiable; we therefore refer to it as “Differ-
entiable RAM”.

The results in Table 1 demonstrate a significant improve-
ment in test error over the original RAM network. More-
over our model had only a single attention patch at each
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Figure 5. Cluttered MNIST classification with attention. Each
sequence shows a succession of four glimpses taken by the net-
work while classifying cluttered translated MNIST. The green
rectangle indicates the size and location of the attention patch,
while the line width represents the variance of the filters.

Table 1. Classification test error on 100 ⇥ 100 Cluttered Trans-
lated MNIST.

Model Error
Convolutional, 2 layers 14.35%
RAM, 4 glimpses, 12 ⇥ 12, 4 scales 9.41%
RAM, 8 glimpses, 12 ⇥ 12, 4 scales 8.11%
Differentiable RAM, 4 glimpses, 12 ⇥ 12 4.18%
Differentiable RAM, 8 glimpses, 12 ⇥ 12 3.36%

time-step, whereas RAM used four, at different zooms.

4.2. MNIST Generation

We trained the full DRAW network as a generative model
on the binarized MNIST dataset (Salakhutdinov & Mur-
ray, 2008). This dataset has been widely studied in the
literature, allowing us to compare the numerical perfor-
mance (measured in average nats per image on the test
set) of DRAW with existing methods. Table 2 shows that
DRAW without selective attention performs comparably to
other recent generative models such as DARN, NADE and
DBMs, and that DRAW with attention considerably im-
proves on the state of the art.

Table 2. Negative log-likelihood (in nats) per test-set example on
the binarised MNIST data set. The right hand column, where
present, gives an upper bound (Eq. 12) on the negative log-
likelihood. The previous results are from [1] (Salakhutdinov &
Hinton, 2009), [2] (Murray & Salakhutdinov, 2009), [3] (Uria
et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende et al., 2014),
[6] (Salimans et al., 2014), [7] (Gregor et al., 2014).

Model � log p 
DBM 2hl [1] ⇡ 84.62

DBN 2hl [2] ⇡ 84.55

NADE [3] 88.33

EoNADE 2hl (128 orderings) [3] 85.10

EoNADE-5 2hl (128 orderings) [4] 84.68

DLGM [5] ⇡ 86.60

DLGM 8 leapfrog steps [6] ⇡ 85.51 88.30

DARN 1hl [7] ⇡ 84.13 88.30

DARN 12hl [7] - 87.72
DRAW without attention - 87.40
DRAW - 80.97

Figure 6. Generated MNIST images. All digits were generated
by DRAW except those in the rightmost column, which shows the
training set images closest to those in the column second to the
right (pixelwise L

2 is the distance measure). Note that the net-
work was trained on binary samples, while the generated images
are mean probabilities.

Once the DRAW network was trained, we generated
MNIST digits following the method in Section 2.3, exam-
ples of which are presented in Fig. 6. Fig. 7 illustrates
the image generation sequence for a DRAW network with-
out selective attention (see Section 3.1). It is interesting to
compare this with the generation sequence for DRAW with
attention, as depicted in Fig. 1. Whereas without attention
it progressively sharpens a blurred image in a global way,
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Figure 5. Cluttered MNIST classification with attention. Each
sequence shows a succession of four glimpses taken by the net-
work while classifying cluttered translated MNIST. The green
rectangle indicates the size and location of the attention patch,
while the line width represents the variance of the filters.

Table 1. Classification test error on 100 ⇥ 100 Cluttered Trans-
lated MNIST.

Model Error
Convolutional, 2 layers 14.35%
RAM, 4 glimpses, 12 ⇥ 12, 4 scales 9.41%
RAM, 8 glimpses, 12 ⇥ 12, 4 scales 8.11%
Differentiable RAM, 4 glimpses, 12 ⇥ 12 4.18%
Differentiable RAM, 8 glimpses, 12 ⇥ 12 3.36%

time-step, whereas RAM used four, at different zooms.

4.2. MNIST Generation

We trained the full DRAW network as a generative model
on the binarized MNIST dataset (Salakhutdinov & Mur-
ray, 2008). This dataset has been widely studied in the
literature, allowing us to compare the numerical perfor-
mance (measured in average nats per image on the test
set) of DRAW with existing methods. Table 2 shows that
DRAW without selective attention performs comparably to
other recent generative models such as DARN, NADE and
DBMs, and that DRAW with attention considerably im-
proves on the state of the art.

Table 2. Negative log-likelihood (in nats) per test-set example on
the binarised MNIST data set. The right hand column, where
present, gives an upper bound (Eq. 12) on the negative log-
likelihood. The previous results are from [1] (Salakhutdinov &
Hinton, 2009), [2] (Murray & Salakhutdinov, 2009), [3] (Uria
et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende et al., 2014),
[6] (Salimans et al., 2014), [7] (Gregor et al., 2014).

Model � log p 
DBM 2hl [1] ⇡ 84.62

DBN 2hl [2] ⇡ 84.55

NADE [3] 88.33

EoNADE 2hl (128 orderings) [3] 85.10

EoNADE-5 2hl (128 orderings) [4] 84.68

DLGM [5] ⇡ 86.60

DLGM 8 leapfrog steps [6] ⇡ 85.51 88.30

DARN 1hl [7] ⇡ 84.13 88.30

DARN 12hl [7] - 87.72
DRAW without attention - 87.40
DRAW - 80.97

Figure 6. Generated MNIST images. All digits were generated
by DRAW except those in the rightmost column, which shows the
training set images closest to those in the column second to the
right (pixelwise L

2 is the distance measure). Note that the net-
work was trained on binary samples, while the generated images
are mean probabilities.

Once the DRAW network was trained, we generated
MNIST digits following the method in Section 2.3, exam-
ples of which are presented in Fig. 6. Fig. 7 illustrates
the image generation sequence for a DRAW network with-
out selective attention (see Section 3.1). It is interesting to
compare this with the generation sequence for DRAW with
attention, as depicted in Fig. 1. Whereas without attention
it progressively sharpens a blurred image in a global way,

• Draw w/ attention being applied to a 
classification task: cluttered MNIST. 

• Attention learns to focus on the digit 
in the scene.
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Figure 5. Cluttered MNIST classification with attention. Each
sequence shows a succession of four glimpses taken by the net-
work while classifying cluttered translated MNIST. The green
rectangle indicates the size and location of the attention patch,
while the line width represents the variance of the filters.

Table 1. Classification test error on 100 ⇥ 100 Cluttered Trans-
lated MNIST.

Model Error
Convolutional, 2 layers 14.35%
RAM, 4 glimpses, 12 ⇥ 12, 4 scales 9.41%
RAM, 8 glimpses, 12 ⇥ 12, 4 scales 8.11%
Differentiable RAM, 4 glimpses, 12 ⇥ 12 4.18%
Differentiable RAM, 8 glimpses, 12 ⇥ 12 3.36%

time-step, whereas RAM used four, at different zooms.

4.2. MNIST Generation

We trained the full DRAW network as a generative model
on the binarized MNIST dataset (Salakhutdinov & Mur-
ray, 2008). This dataset has been widely studied in the
literature, allowing us to compare the numerical perfor-
mance (measured in average nats per image on the test
set) of DRAW with existing methods. Table 2 shows that
DRAW without selective attention performs comparably to
other recent generative models such as DARN, NADE and
DBMs, and that DRAW with attention considerably im-
proves on the state of the art.

Table 2. Negative log-likelihood (in nats) per test-set example on
the binarised MNIST data set. The right hand column, where
present, gives an upper bound (Eq. 12) on the negative log-
likelihood. The previous results are from [1] (Salakhutdinov &
Hinton, 2009), [2] (Murray & Salakhutdinov, 2009), [3] (Uria
et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende et al., 2014),
[6] (Salimans et al., 2014), [7] (Gregor et al., 2014).

Model � log p 
DBM 2hl [1] ⇡ 84.62

DBN 2hl [2] ⇡ 84.55

NADE [3] 88.33

EoNADE 2hl (128 orderings) [3] 85.10

EoNADE-5 2hl (128 orderings) [4] 84.68

DLGM [5] ⇡ 86.60

DLGM 8 leapfrog steps [6] ⇡ 85.51 88.30

DARN 1hl [7] ⇡ 84.13 88.30

DARN 12hl [7] - 87.72
DRAW without attention - 87.40
DRAW - 80.97

Figure 6. Generated MNIST images. All digits were generated
by DRAW except those in the rightmost column, which shows the
training set images closest to those in the column second to the
right (pixelwise L

2 is the distance measure). Note that the net-
work was trained on binary samples, while the generated images
are mean probabilities.

Once the DRAW network was trained, we generated
MNIST digits following the method in Section 2.3, exam-
ples of which are presented in Fig. 6. Fig. 7 illustrates
the image generation sequence for a DRAW network with-
out selective attention (see Section 3.1). It is interesting to
compare this with the generation sequence for DRAW with
attention, as depicted in Fig. 1. Whereas without attention
it progressively sharpens a blurred image in a global way,

Samples from DRAW with Attention:

NLL of MNIST test samples:

This is really low!
Image from Jörg Bornschein
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NLL of MNIST test samples:
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• VAE inference approximates the posterior                 with  a distribution 
that is conditionally independent in z : 

- Consequence:  Non-multimodal, i.e. unimodal distribution. 

• Can parametrize some distribution (e.g. a full cov. Gaussian), but what 
is the right distribution? 

• Can we lessen this restriction? How can we get closer to                ? 

pθ(z | x)
qφ(z | x) =

∏

i

qφ(zi | x)

z2

z1 x1

x3

x2

g

f

pθ(z | x)
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Normalizing Flows 
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http://arxiv.org/find/stat/1/au:+Rezende_D/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Mohamed_S/0/1/0/all/0/1
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• How do we specify a complicated joint distribution over z? 

• Normalizing flows: the transformation of a probability density through 
a sequence of invertible mappings. 

- By repeated application of the rule for random variable transformations, the initial 
density flows through the sequence of invertible mappings. 

- At the end of the sequence, we have a valid (maybe complex) probability distribution.  

• Transformation of random variables:                 , 
For invertible functions: 

• Chaining together a sequence:    

z′ = f(z) f−1(z′) = z

log qK(zK) = log q0(z0)−
K∑

k=1

log

∣∣∣∣det
∂fk

∂zk

∣∣∣∣

zK = fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1(z0)

q(z′) = q(z)

∣∣∣∣det
∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det
∂f

∂z

∣∣∣∣
−1
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• Law of the unconscious statistician: expectations w.r.t. the 
transformed density qK(zK) can be written as expectations w.r.t. the 
original q0(z0).  For                                                          , 

• The variational lower bound:

zK = fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1(z0)

EqK

[
g(zK)] = Eq0 [g(fK ◦ fK−1 ◦ · · · ◦ f2 ◦ f1(z0))

]

L(�, �, x) = Eq�(z|x) [log p�(x, z) � log q�(z | x)]

= EqK(zK) [log p(x, zK) � log qK(zK)]

= Eq0(z0)

�
log p(x, zK) � log q0(z0) +

K�

k=1

log

����det
�fk

�zk�1

����

�
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• Consider the family of transformations: 

• Chaining these transformations gives us a rich family of posteriors,
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Variational Inference with Normalizing Flows

involves several additional operations that are also O(LD3
)

and involve matrix inverses that can be numerically unsta-
ble. We therefore require normalizing flows that allow for
low-cost computation of the determinant, or where the Ja-
cobian is not needed at all.

4.1. Invertible Linear-time Transformations

We consider a family of transformations of the form:

f(z) = z+ uh(w>
z+ b), (10)

where � = {w 2 IR

D,u 2 IR

D, b 2 IR} are free pa-
rameters and h(·) is a smooth element-wise non-linearity,
with derivative h0

(·). For this mapping we can compute
the logdet-Jacobian term in O(D) time (using the matrix
determinant lemma):

 (z) = h0
(w

>
z+ b)w (11)

det

��� @f
@z

��� = | det(I+ u (z)>)| = |1 + u

> (z)|. (12)

From (7) we conclude that the density q
K

(z) obtained by
transforming an arbitrary initial density q0(z) through the
sequence of maps f

k

of the form (10) is implicitly given
by:

z

K

= f
K

� f
K�1 � . . . � f1(z)

ln q
K

(z

K

) = ln q0(z)�
KX

k=1

ln |1 + u

>
k

 
k

(z

k

)|. (13)

The flow defined by the transformation (13) modifies the
initial density q0 by applying a series of contractions and
expansions in the direction perpendicular to the hyperplane
w

>
z+b = 0, hence we refer to these maps as planar flows.

As an alternative, we can consider a family of transforma-
tions that modify an initial density q0 around a reference
point z0. The transformation family is:

f(z) = z+ �h(↵, r)(z� z0), (14)

det

����
@f

@z

���� = [1 + �h(↵, r)]
d�1

[1 + �h(↵, r) + h0
(↵, r)r)] ,

where r = |z � z0|, h(↵, r) = 1/(↵ + r), and the param-
eters of the map are � = {z0 2 IR

D,↵ 2 IR,� 2 IR}.
This family also allows for linear-time computation of the
determinant. It applies radial contractions and expansions
around the reference point and are thus referred to as radial
flows. We show the effect of expansions and contractions
on a uniform and Gaussian initial density using the flows
(10) and (14) in figure 1. This visualization shows that we
can transform a spherical Gaussian distribution into a bi-
modal distribution by applying two successive transforma-
tions.

Not all functions of the form (10) or (14) will be invert-
ible. We discuss the conditions for invertibility and how to
satisfy them in a numerically stable way in the appendix.
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Figure 1. Effect of normalizing flow on two distributions.

Inference network Generative model

Figure 2. Inference and generative models. Left: Inference net-
work maps the observations to the parameters of the flow; Right:
generative model which receives the posterior samples from the
inference network during training time. Round containers repre-
sent layers of stochastic variables whereas square containers rep-
resent deterministic layers.

4.2. Flow-Based Free Energy Bound

If we parameterize the approximate posterior distribution
with a flow of length K, q

�

(z|x) := q
K

(z

K

), the free en-
ergy (3) can be written as an expectation over the initial
distribution q0(z):

F(x) = E
q�(z|x)[log q

�

(z|x)� log p(x, z)]

= E
q0(z0) [ln q

K

(z

K

)� log p(x, z
K

)]

= E
q0(z0) [ln q0(z0)]� E

q0(z0) [log p(x, z
K

)]

� E
q0(z0)

"
KX

k=1

ln |1 + u

>
k

 
k

(z

k

)|
#

. (15)

Normalizing flows and this free energy bound can be used
with any variational optimization scheme, including gener-
alized variational EM. For amortized variational inference,
we construct an inference model using a deep neural net-
work to build a mapping from the observations x to the
parameters of the initial density q0 = N (µ,�) (µ 2 IR

D

and � 2 IR

D) as well as the parameters of the flow �.

4.3. Algorithm Summary and Complexity

The resulting algorithm is a simple modification of the
amortized inference algorithm for DLGMs described by
(Kingma & Welling, 2014; Rezende et al., 2014), which
we summarize in algorithm 1. By using an inference net-

f(z) = z + uh
(
w⊤z + b

)

ψ(z) = h′ (w⊤z + b
)
w

∣∣∣∣det
∂f

∂z

∣∣∣∣ =
∣∣1 + u⊤ψ(z)

∣∣

log qK(zK) = log q0(z0)−
K∑

k=1

log
∣∣1 + u⊤

k ψk(zk)
∣∣
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• Normalizing flow integration into the VAE: 

• Normalizing flows are fully differentiable, so learning via gradient 
backpropagation can proceed as before.

Variational Inference with Normalizing Flows

involves several additional operations that are also O(LD3
)

and involve matrix inverses that can be numerically unsta-
ble. We therefore require normalizing flows that allow for
low-cost computation of the determinant, or where the Ja-
cobian is not needed at all.

4.1. Invertible Linear-time Transformations

We consider a family of transformations of the form:

f(z) = z+ uh(w>
z+ b), (10)

where � = {w 2 IR

D,u 2 IR

D, b 2 IR} are free pa-
rameters and h(·) is a smooth element-wise non-linearity,
with derivative h0

(·). For this mapping we can compute
the logdet-Jacobian term in O(D) time (using the matrix
determinant lemma):

 (z) = h0
(w

>
z+ b)w (11)

det

��� @f
@z

��� = | det(I+ u (z)>)| = |1 + u

> (z)|. (12)

From (7) we conclude that the density q
K

(z) obtained by
transforming an arbitrary initial density q0(z) through the
sequence of maps f

k

of the form (10) is implicitly given
by:

z

K

= f
K

� f
K�1 � . . . � f1(z)

ln q
K

(z

K

) = ln q0(z)�
KX

k=1

ln |1 + u

>
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k
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)|. (13)

The flow defined by the transformation (13) modifies the
initial density q0 by applying a series of contractions and
expansions in the direction perpendicular to the hyperplane
w

>
z+b = 0, hence we refer to these maps as planar flows.

As an alternative, we can consider a family of transforma-
tions that modify an initial density q0 around a reference
point z0. The transformation family is:

f(z) = z+ �h(↵, r)(z� z0), (14)

det

����
@f

@z

���� = [1 + �h(↵, r)]
d�1

[1 + �h(↵, r) + h0
(↵, r)r)] ,

where r = |z � z0|, h(↵, r) = 1/(↵ + r), and the param-
eters of the map are � = {z0 2 IR

D,↵ 2 IR,� 2 IR}.
This family also allows for linear-time computation of the
determinant. It applies radial contractions and expansions
around the reference point and are thus referred to as radial
flows. We show the effect of expansions and contractions
on a uniform and Gaussian initial density using the flows
(10) and (14) in figure 1. This visualization shows that we
can transform a spherical Gaussian distribution into a bi-
modal distribution by applying two successive transforma-
tions.

Not all functions of the form (10) or (14) will be invert-
ible. We discuss the conditions for invertibility and how to
satisfy them in a numerically stable way in the appendix.
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Figure 1. Effect of normalizing flow on two distributions.
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Figure 2. Inference and generative models. Left: Inference net-
work maps the observations to the parameters of the flow; Right:
generative model which receives the posterior samples from the
inference network during training time. Round containers repre-
sent layers of stochastic variables whereas square containers rep-
resent deterministic layers.

4.2. Flow-Based Free Energy Bound

If we parameterize the approximate posterior distribution
with a flow of length K, q

�

(z|x) := q
K

(z

K

), the free en-
ergy (3) can be written as an expectation over the initial
distribution q0(z):

F(x) = E
q�(z|x)[log q

�

(z|x)� log p(x, z)]

= E
q0(z0) [ln q

K

(z

K

)� log p(x, z
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= E
q0(z0) [ln q0(z0)]� E
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Normalizing flows and this free energy bound can be used
with any variational optimization scheme, including gener-
alized variational EM. For amortized variational inference,
we construct an inference model using a deep neural net-
work to build a mapping from the observations x to the
parameters of the initial density q0 = N (µ,�) (µ 2 IR

D

and � 2 IR

D) as well as the parameters of the flow �.

4.3. Algorithm Summary and Complexity

The resulting algorithm is a simple modification of the
amortized inference algorithm for DLGMs described by
(Kingma & Welling, 2014; Rezende et al., 2014), which
we summarize in algorithm 1. By using an inference net-

Normalizing Flow

f(z) = z + uh
(
w⊤z + b

)
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• Quantitative comparison to other methods shows the benefit of the 
normalizing flows. 

Recall that DRAW achieved <= 80.97 

Variational Inference with Normalizing Flows
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Figure 4. Effect of the flow-length on MNIST.

Table 2. Comparison of negative log-probabilities on the test set
for the binarised MNIST data.

Model � ln p(x)

DLGM diagonal covariance  89.9
DLGM+NF (k = 10)  87.5
DLGM+NF (k = 20)  86.5
DLGM+NF (k = 40)  85.7
DLGM+NF (k = 80)  85.1
DLGM+NICE (k = 10)  88.6
DLGM+NICE (k = 20)  87.9
DLGM+NICE (k = 40)  87.3
DLGM+NICE (k = 80)  87.2

Results below from (Salimans et al., 2015)

DLGM + HVI (1 leapfrog step) 88.08
DLGM + HVI (4 leapfrog steps) 86.40
DLGM + HVI (8 leapfrog steps) 85.51

Results below from (Gregor et al., 2014)

DARN n

h

= 500 84.71
DARN n

h

= 500, adaNoise 84.13

digits (0 to 9) that are 28 ⇥ 28 pixels in size. We used the
binarized dataset as in (Uria et al., 2014). We trained differ-
ent DLGMs with 40 latent variables for 500, 000 parameter
updates.

The performance of a DLGM using the (planar) nor-
malizing flow (DLGM+NF) approximation is com-
pared to the volume-preserving approaches using NICE
(DLGM+NICE) on exactly the same model for different
flow-lengths K, and we summarize the performance in fig-
ure 4. This graph shows that an increase in the flow-length
systematically improves the bound F , as shown in figure
4(a), and reduces the KL-divergence between the approx-
imate posterior q(z|x) and the true posterior distribution
p(z|x) (figure 4(b)). It also shows that the approach us-
ing general normalizing flows outperforms that of NICE.
We also show a wider comparison in table 2. Results are
included for the Hamiltonian variational approach as well,
but the model specification is different and thus gives an
indication of attainable performance for this approach on
this data set.

The CIFAR-10 natural images dataset (Krizhevsky & Hin-
ton, 2010) consists of 50,000 training and 10,000 test RGB
images that are of size 3x32x32 pixels from which we ex-
tract 3x8x8 random patches. The color levels were con-
verted to the range [✏, 1 � ✏] with ✏ = 0.0001. Here we
used similar DLGMs as used for the MNIST experiment,

Table 3. Test set performance on the CIFAR-10 data.
K = 0 K = 2 K = 5 K = 10

� ln p(x) -293.7 -308.6 -317.9 -320.7

but with 30 latent variables. Since this data is non-binary,
we use a logit-normal observation likelihood, p(x|µ,↵) =Q

i

N (logit(xi)|µi,↵i)
xi(1�xi)

, where logit(x) = log

x

1�x

. We sum-
marize the results in table 3 where we are again able to
show that an increase in the flow length K systematically
improves the test log-likelihoods, resulting in better poste-
rior approximations.

7. Conclusion and Discussion
In this work we developed a simple approach for learn-
ing highly non-Gaussian posterior densities by learning
transformations of simple densities to more complex ones
through a normalizing flow. When combined with an amor-
tized approach for variational inference using inference
networks and efficient Monte Carlo gradient estimation, we
are able to show clear improvements over simple approxi-
mations on different problems. Using this view of normal-
izing flows, we are able to provide a unified perspective of
other closely related methods for flexible posterior estima-
tion that points to a wide spectrum of approaches for de-
signing more powerful posterior approximations with dif-
ferent statistical and computational tradeoffs.

An important conclusion from the discussion in section 3
is that there exist classes of normalizing flows that allow us
to create extremely rich posterior approximations for vari-
ational inference. With normalizing flows, we are able to
show that in the asymptotic regime, the space of solutions
is rich enough to contain the true posterior distribution. If
we combine this with the local convergence and consis-
tency results for maximum likelihood parameter estimation
in certain classes of latent variables models (Wang & Tit-
terington, 2004), we see that we are now able overcome the
objections to using variational inference as a competitive
and default approach for statistical inference. Making such
statements rigorous is an important line of future research.

Normalizing flows allow us to control the complexity of the
posterior at run-time by simply increasing the flow length
of the sequence. The approach we presented considered
normalizing flows based on simple transformations of the
form (10) and (14). These are just two of the many maps
that can be used, and alternative transforms can be designed
for posterior approximations that may require other con-
straints, e.g., a restricted support. An important avenue of
future research lies in describing the classes of transforma-
tions that allow for different characteristics of the posterior
and that still allow for efficient, linear-time computation.

Ackowledgements: We thank Charles Blundell, Theo-
phane Weber and Daan Wierstra for helpful discussions.
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• Standard VAE posteriors are factorized - limiting how well they can 
(marginally) fit the prior. 

• IAF greatly improves the flexibility of the posterior distributions, and allows 
for a much better fit between the posteriors and the prior. 

(a) Prior distribution (b) Posteriors in standard VAE (c) Posteriors in VAE with IAF

Figure 1: Best viewed in color. We fitted a variational auto-encoder (VAE) with a spherical Gaussian
prior, and with factorized Gaussian posteriors (b) or inverse autoregressive flow (IAF) posteriors (c)
to a toy dataset with four datapoints. Each colored cluster corresponds to the posterior distribution of
one datapoint. IAF greatly improves the flexibility of the posterior distributions, and allows for a
much better fit between the posteriors and the prior.

improving inference models including previously used normalizing flows, this transformation is well
suited to high-dimensional tensor variables, such as spatio-temporally organized variables.

We demonstrate this method by improving inference networks of deep variational auto-encoders.
In particular, we train deep variational auto-encoders with latent variables at multiple levels of the
hierarchy, where each stochastic variable is a three-dimensional tensor (a stack of featuremaps), and
demonstrate improved performance.

2 Variational Inference and Learning

Let x be a (set of) observed variable(s), z a (set of) latent variable(s) and let p(x, z) be the parametric
model of their joint distribution, called the generative model defined over the variables. Given a
dataset X = {x1

, ...,x

N} we typically wish to perform maximum marginal likelihood learning of its
parameters, i.e. to maximize

log p(X) =

NX

i=1

log p(x

(i)
), (1)

but in general this marginal likelihood is intractable to compute or differentiate directly for flexible
generative models, e.g. when components of the generative model are parameterized by neural
networks. A solution is to introduce q(z|x), a parametric inference model defined over the latent
variables, and optimize the variational lower bound on the marginal log-likelihood of each observation
x:

log p(x) � Eq(z|x) [log p(x, z)� log q(z|x)] = L(x;✓) (2)

where ✓ indicates the parameters of p and q models. Keeping in mind that Kullback-Leibler diver-
gences DKL(.) are non-negative, it’s clear that L(x;✓) is a lower bound on log p(x) since it can be
written as follows ):

L(x;✓) = log p(x)�DKL(q(z|x)||p(z|x)) (3)

There are various ways to optimize the lower bound L(x;✓); for continuous z it can be done efficiently
through a re-parameterization of q(z|x), see e.g. (Kingma and Welling, 2013; Rezende et al., 2014).

As can be seen from equation (3), maximizing L(x;✓) w.r.t. ✓ will concurrently maximize log p(x)

and minimize DKL(q(z|x)||p(z|x)). The closer DKL(q(z|x)||p(z|x)) is to 0, the closer L(x;✓) will
be to log p(x), and the better an approximation our optimization objective L(x;✓) is to our true objec-
tive log p(x). Also, minimization of DKL(q(z|x)||p(z|x)) can be a goal in itself, if we’re interested
in using q(z|x) for inference after optimization. In any case, the divergence DKL(q(z|x)||p(z|x))
is a function of our parameters through both the inference model and the generative model, and
increasing the flexibility of either is generally helpful towards our objective.
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• Inspired by the Normalizing Flows of Rezende and Mohamed (2015). 

• Inverse Autoregressive Flow (IAF) uses a simple sequence of 
autoregressive latent variables: 

• Recall that for Normalizing Flows: 

• For IAF, if µ and σ are autoregressive functions of zt-1, this simplifies to:

Algorithm 1: Pseudo-code of an approximate posterior with Inverse Autoregressive Flow (IAF)
Data:

x: a datapoint, and optionally other conditioning information
✓: neural network parameters
EncoderNN(x;✓): encoder neural network, with additional output h
AutoregressiveNN[⇤](z,h;✓): autoregressive neural networks, with additional input h
sum(.): sum over vector elements
sigmoid(.): element-wise sigmoid function

Result:
z: a random sample from q(z|x), the approximate posterior distribution
l: the scalar value of log q(z|x), evaluated at sample ’z’

[µ,�,h] EncoderNN(x;✓)
✏ ⇠ N (0, I)

z � � ✏+ µ
l �sum(log� +

1
2✏

2
+

1
2 log(2⇡))

for t 1 to T do
[m, s] AutoregressiveNN[t](z,h;✓)
�  sigmoid(s)

z � � z+ (1� �)�m

l l � sum(log�)
end

computation involved in this transformation is clearly proportional to the dimensionality D. Since
variational inference requires sampling from the posterior, such models are not interesting for direct
use in such applications. However, the inverse transformation is interesting for normalizing flows, as
we will show. As long as we have �i > 0 for all i, the sampling transformation above is a one-to-one
transformation, and can be inverted: ✏i =

yi�µi(y1:i�1)
�i(y1:i�1)

.

We make two key observations, important for normalizing flows. The first is that this inverse
transformation can be parallelized, since (in case of autoregressive autoencoders) computations of
the individual elements ✏i do not depend on eachother. The vectorized transformation is:

✏ = (y � µ(y))/�(y) (7)
where the subtraction and division are elementwise.

The second key observation, is that this inverse autoregressive operation has a simple Jacobian
determinant. Note that due to the autoregressive structure, @[µi,�i]/@yj = [0, 0] for j � i. As a
result, the transformation has a lower triangular Jacobian (@✏i/@yj = 0 for j > i), with a simple
diagonal: @✏i/@yi = �i. The determinant of a lower triangular matrix equals the product of the
diagonal terms. As a result, the log-determinant of the Jacobian of the transformation is remarkably
simple and straightforward to compute:

log det

����
d✏

dy

���� =
DX

i=1

� log �i(y) (8)

The combination of model flexibility, parallelizability across dimensions, and simple log-determinant,
make this transformation interesting for use as a normalizing flow over high-dimensional latent space.

4 Inverse Autoregressive Flow (IAF)

We propose a new type normalizing flow (eq. (5)), based on transformations that are equivalent to
the inverse autoregressive transformation of eq. (7) up to reparameterization. See algorithm 1 for
pseudo-code of an appproximate posterior with the proposed flow. We let an initial encoder neural
network output µ0 and �0, in addition to an extra output h, which serves as an additional input to
each subsequent step in the flow. We draw a random sample ✏ ⇠ N (0, I), and initialize the chain
with:

z0 = µ0 + �0 � ✏ (9)
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Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.

The flow consists of a chain of T of the following transformations:

zt = µt + �t � zt�1 (10)

where at the t-th step of the flow, we use a different autoregressive neural network with inputs zt�1

and h, and outputs µt and �t. The neural network is structured to be autoregressive w.r.t. zt�1, such
that for any choice of its parameters, the Jacobians dµt

dzt�1
and d�t

dzt�1
are triangular with zeros on the

diagonal. As a result, dzt
dzt�1

is triangular with �t on the diagonal, with determinant
QD

i=1 �t,i. (Note
that the Jacobian w.r.t. h does not have constraints.) Following eq. (5), the density under the final
iterate is:

log q(zT |x) = �
DX

i=1

 
1
2✏

2
i +

1
2 log(2⇡) +

TX

t=0

log �t,i

!
(11)

The flexibility of the distribution of the final iterate zT , and its ability to closely fit to the true posterior,
increases with the expressivity of the autoregressive models and the depth of the chain. See figure 2
for an illustration.

A numerically stable version, inspired by the LSTM-type update, is where we let the autoregressive
network output [mt, st], two unconstrained real-valued vectors:

[mt, st] AutoregressiveNN[t](zt,h;✓) (12)

and compute zt as:

�t = sigmoid(st) (13)
zt = �t � zt�1 + (1� �t)�mt (14)

This version is shown in algorithm 1. Note that this is just a particular version of the update of
eq. (10), so the simple computation of the final log-density of eq. (11) still applies.

We found it beneficial for results to parameterize or initialize the parameters of each
AutoregressiveNN[t] such that its outputs st are, before optimization, sufficiently positive, such as
close to +1 or +2. This leads to an initial behaviour that updates z only slightly with each step of IAF.
Such a parameterization is known as a ’forget gate bias’ in LSTMs, as investigated by Jozefowicz
et al. (2015).

Perhaps the simplest special version of IAF is one with a simple step, and a linear autoregressive
model. This transforms a Gaussian variable with diagonal covariance, to one with linear dependencies,
i.e. a Gaussian distribution with full covariance. See appendix A for an explanation.

Autoregressive neural networks form a rich family of nonlinear transformations for IAF. For non-
convolutional models, we use the family of masked autoregressive networks introduced in (Germain
et al., 2015) for the autoregressive neural networks. For CIFAR-10 experiments, which benefits more
from scaling to high dimensional latent space, we use the family of convolutional autoregressive
autoencoders introduced by (van den Oord et al., 2016b,c).

We found that results improved when reversing the ordering of the variables after each step in the IAF
chain. This is a volume-preserving transformation, so the simple form of eq. (11) remains unchanged.
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Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.
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The flexibility of the distribution of the final iterate zT , and its ability to closely fit to the true posterior,
increases with the expressivity of the autoregressive models and the depth of the chain. See figure 2
for an illustration.

A numerically stable version, inspired by the LSTM-type update, is where we let the autoregressive
network output [mt, st], two unconstrained real-valued vectors:

[mt, st] AutoregressiveNN[t](zt,h;✓) (12)

and compute zt as:
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zt = �t � zt�1 + (1� �t)�mt (14)

This version is shown in algorithm 1. Note that this is just a particular version of the update of
eq. (10), so the simple computation of the final log-density of eq. (11) still applies.
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close to +1 or +2. This leads to an initial behaviour that updates z only slightly with each step of IAF.
Such a parameterization is known as a ’forget gate bias’ in LSTMs, as investigated by Jozefowicz
et al. (2015).

Perhaps the simplest special version of IAF is one with a simple step, and a linear autoregressive
model. This transforms a Gaussian variable with diagonal covariance, to one with linear dependencies,
i.e. a Gaussian distribution with full covariance. See appendix A for an explanation.

Autoregressive neural networks form a rich family of nonlinear transformations for IAF. For non-
convolutional models, we use the family of masked autoregressive networks introduced in (Germain
et al., 2015) for the autoregressive neural networks. For CIFAR-10 experiments, which benefits more
from scaling to high dimensional latent space, we use the family of convolutional autoregressive
autoencoders introduced by (van den Oord et al., 2016b,c).

We found that results improved when reversing the ordering of the variables after each step in the IAF
chain. This is a volume-preserving transformation, so the simple form of eq. (11) remains unchanged.

5

Note that in models with multiple latent variables, the inference model is typically factorized into
partial inference models with some ordering; e.g. q(za, zb|x) = q(za|x)q(zb|za,x). We’ll write
q(z|x, c) to denote such partial inference models, conditioned on both the data x and a further context
c which includes the previous latent variables according to the ordering.

2.1 Requirements for Computational Tractability

Requirements for the inference model, in order to be able to efficiently optimize the bound, are that it
is (1) computationally efficient to compute and differentiate its probability density q(z|x), and (2)
computationally efficient to sample from, since both these operations need to be performed for each
datapoint in a minibatch at every iteration of optimization. If z is high-dimensional and we want
to make efficient use of parallel computational resources like GPUs, then parallelizability of these
operations across dimensions of z is a large factor towards efficiency. This requirement restrict the
class of approximate posteriors q(z|x) that are practical to use. In practice this often leads to the use
of diagonal posteriors, e.g. q(z|x) ⇠ N (µ(x),�2

(x)), where µ(x) and �(x) are often nonlinear
functions parameterized by neural networks. However, as explained above, we also need the density
q(z|x) to be sufficiently flexible to match the true posterior p(z|x).

2.2 Normalizing Flow

Normalizing Flow (NF), introduced by (Rezende and Mohamed, 2015) in the context of stochastic
gradient variational inference, is a powerful framework for building flexible posterior distributions
through an iterative procedure. The general idea is to start off with an initial random variable with a
relatively simple distribution with known (and computationally cheap) probability density function,
and then apply a chain of invertible parameterized transformations ft, such that the last iterate zT has
a more flexible distribution2:

z0 ⇠ q(z0|x), zt = ft(zt�1,x) 8t = 1...T (4)

As long as the Jacobian determinant of each of the transformations ft can be computed, we can still
compute the probability density function of the last iterate:

log q(zT |x) = log q(z0|x)�
TX

t=1

log det

����
dzt

dzt�1

���� (5)

However, (Rezende and Mohamed, 2015) experiment with only a very limited family of such
invertible transformation with known Jacobian determinant, namely:

ft(zt�1) = zt�1 + uh(w

T
zt�1 + b) (6)

where u and w are vectors, wT is w transposed, b is a scalar and h(.) is a nonlinearity, such that
uh(w

T
zt�1+ b) can be interpreted as a MLP with a bottleneck hidden layer with a single unit. Since

information goes through the single bottleneck, a long chain of transformations is required to capture
high-dimensional dependencies.

3 Inverse Autoregressive Transformations

In order to find a type of normalizing flow that scales well to high-dimensional space, we consider
Gaussian versions of autoregressive autoencoders such as MADE (Germain et al., 2015) and the
PixelCNN (van den Oord et al., 2016b). Let y be a variable modeled by such a model, with some
chosen ordering on its elements y = {yi}Di=1. We will use [µ(y),�(y)] to denote the function of the
vector y, to the vectors µ and �. Due to the autoregressive structure, the Jacobian is lower triangular
with zeros on the diagonal: @[µi,�i]/@yj = [0, 0] for j � i. The elements [µi(y1:i�1),�i(y1:i�1)]

are the predicted mean and standard deviation of the i-th element of y, which are functions of only
the previous elements in y.

Sampling from such a model is a sequential transformation from a noise vector ✏ ⇠ N (0, I) to the
corresponding vector y: y0 = µ0 + �0 � ✏0, and for i > 0, yi = µi(y1:i�1) + �i(y1:i�1) · ✏i. The

2where x is the context, such as the value of the datapoint. In case of models with multiple levels of latent
variables, the context also includes the value of the previously sampled latent variables.

3

Subtle but important detail!
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Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.

The flow consists of a chain of T of the following transformations:

zt = µt + �t � zt�1 (10)

where at the t-th step of the flow, we use a different autoregressive neural network with inputs zt�1

and h, and outputs µt and �t. The neural network is structured to be autoregressive w.r.t. zt�1, such
that for any choice of its parameters, the Jacobians dµt

dzt�1
and d�t

dzt�1
are triangular with zeros on the

diagonal. As a result, dzt
dzt�1

is triangular with �t on the diagonal, with determinant
QD

i=1 �t,i. (Note
that the Jacobian w.r.t. h does not have constraints.) Following eq. (5), the density under the final
iterate is:

log q(zT |x) = �
DX

i=1

 
1
2✏

2
i +

1
2 log(2⇡) +

TX

t=0

log �t,i

!
(11)

The flexibility of the distribution of the final iterate zT , and its ability to closely fit to the true posterior,
increases with the expressivity of the autoregressive models and the depth of the chain. See figure 2
for an illustration.

A numerically stable version, inspired by the LSTM-type update, is where we let the autoregressive
network output [mt, st], two unconstrained real-valued vectors:

[mt, st] AutoregressiveNN[t](zt,h;✓) (12)

and compute zt as:

�t = sigmoid(st) (13)
zt = �t � zt�1 + (1� �t)�mt (14)

This version is shown in algorithm 1. Note that this is just a particular version of the update of
eq. (10), so the simple computation of the final log-density of eq. (11) still applies.

We found it beneficial for results to parameterize or initialize the parameters of each
AutoregressiveNN[t] such that its outputs st are, before optimization, sufficiently positive, such as
close to +1 or +2. This leads to an initial behaviour that updates z only slightly with each step of IAF.
Such a parameterization is known as a ’forget gate bias’ in LSTMs, as investigated by Jozefowicz
et al. (2015).

Perhaps the simplest special version of IAF is one with a simple step, and a linear autoregressive
model. This transforms a Gaussian variable with diagonal covariance, to one with linear dependencies,
i.e. a Gaussian distribution with full covariance. See appendix A for an explanation.

Autoregressive neural networks form a rich family of nonlinear transformations for IAF. For non-
convolutional models, we use the family of masked autoregressive networks introduced in (Germain
et al., 2015) for the autoregressive neural networks. For CIFAR-10 experiments, which benefits more
from scaling to high dimensional latent space, we use the family of convolutional autoregressive
autoencoders introduced by (van den Oord et al., 2016b,c).

We found that results improved when reversing the ordering of the variables after each step in the IAF
chain. This is a volume-preserving transformation, so the simple form of eq. (11) remains unchanged.
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Figure 2: Like other normalizing flows, drawing samples from an approximate posterior with Inverse
Autoregressive Flow (IAF) consists of an initial sample z drawn from a simple distribution, such as a
Gaussian with diagonal covariance, followed by a chain of nonlinear invertible transformations of z,
each with a simple Jacobian determinants.

The flow consists of a chain of T of the following transformations:
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The flexibility of the distribution of the final iterate zT , and its ability to closely fit to the true posterior,
increases with the expressivity of the autoregressive models and the depth of the chain. See figure 2
for an illustration.

A numerically stable version, inspired by the LSTM-type update, is where we let the autoregressive
network output [mt, st], two unconstrained real-valued vectors:

[mt, st] AutoregressiveNN[t](zt,h;✓) (12)

and compute zt as:

�t = sigmoid(st) (13)
zt = �t � zt�1 + (1� �t)�mt (14)

This version is shown in algorithm 1. Note that this is just a particular version of the update of
eq. (10), so the simple computation of the final log-density of eq. (11) still applies.

We found it beneficial for results to parameterize or initialize the parameters of each
AutoregressiveNN[t] such that its outputs st are, before optimization, sufficiently positive, such as
close to +1 or +2. This leads to an initial behaviour that updates z only slightly with each step of IAF.
Such a parameterization is known as a ’forget gate bias’ in LSTMs, as investigated by Jozefowicz
et al. (2015).

Perhaps the simplest special version of IAF is one with a simple step, and a linear autoregressive
model. This transforms a Gaussian variable with diagonal covariance, to one with linear dependencies,
i.e. a Gaussian distribution with full covariance. See appendix A for an explanation.

Autoregressive neural networks form a rich family of nonlinear transformations for IAF. For non-
convolutional models, we use the family of masked autoregressive networks introduced in (Germain
et al., 2015) for the autoregressive neural networks. For CIFAR-10 experiments, which benefits more
from scaling to high dimensional latent space, we use the family of convolutional autoregressive
autoencoders introduced by (van den Oord et al., 2016b,c).

We found that results improved when reversing the ordering of the variables after each step in the IAF
chain. This is a volume-preserving transformation, so the simple form of eq. (11) remains unchanged.

5
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Algorithm 1: Pseudo-code of an approximate posterior with Inverse Autoregressive Flow (IAF)
Data:

x: a datapoint, and optionally other conditioning information
✓: neural network parameters
EncoderNN(x;✓): encoder neural network, with additional output h
AutoregressiveNN[⇤](z,h;✓): autoregressive neural networks, with additional input h
sum(.): sum over vector elements
sigmoid(.): element-wise sigmoid function

Result:
z: a random sample from q(z|x), the approximate posterior distribution
l: the scalar value of log q(z|x), evaluated at sample ’z’

[µ,�,h] EncoderNN(x;✓)
✏ ⇠ N (0, I)

z � � ✏+ µ
l �sum(log� +

1
2✏

2
+

1
2 log(2⇡))

for t 1 to T do
[m, s] AutoregressiveNN[t](z,h;✓)
�  sigmoid(s)

z � � z+ (1� �)�m

l l � sum(log�)
end

computation involved in this transformation is clearly proportional to the dimensionality D. Since
variational inference requires sampling from the posterior, such models are not interesting for direct
use in such applications. However, the inverse transformation is interesting for normalizing flows, as
we will show. As long as we have �i > 0 for all i, the sampling transformation above is a one-to-one
transformation, and can be inverted: ✏i =

yi�µi(y1:i�1)
�i(y1:i�1)

.

We make two key observations, important for normalizing flows. The first is that this inverse
transformation can be parallelized, since (in case of autoregressive autoencoders) computations of
the individual elements ✏i do not depend on eachother. The vectorized transformation is:

✏ = (y � µ(y))/�(y) (7)
where the subtraction and division are elementwise.

The second key observation, is that this inverse autoregressive operation has a simple Jacobian
determinant. Note that due to the autoregressive structure, @[µi,�i]/@yj = [0, 0] for j � i. As a
result, the transformation has a lower triangular Jacobian (@✏i/@yj = 0 for j > i), with a simple
diagonal: @✏i/@yi = �i. The determinant of a lower triangular matrix equals the product of the
diagonal terms. As a result, the log-determinant of the Jacobian of the transformation is remarkably
simple and straightforward to compute:

log det

����
d✏

dy

���� =
DX

i=1

� log �i(y) (8)

The combination of model flexibility, parallelizability across dimensions, and simple log-determinant,
make this transformation interesting for use as a normalizing flow over high-dimensional latent space.

4 Inverse Autoregressive Flow (IAF)

We propose a new type normalizing flow (eq. (5)), based on transformations that are equivalent to
the inverse autoregressive transformation of eq. (7) up to reparameterization. See algorithm 1 for
pseudo-code of an appproximate posterior with the proposed flow. We let an initial encoder neural
network output µ0 and �0, in addition to an extra output h, which serves as an additional input to
each subsequent step in the flow. We draw a random sample ✏ ⇠ N (0, I), and initialize the chain
with:

z0 = µ0 + �0 � ✏ (9)

4
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Table 1: Generative modeling results on the dynamically sampled binarized MNIST version used
in previous publications (Burda et al., 2015). Shown are averages; the number between brackets
are standard deviations across 5 optimization runs. The right column shows an importance sampled
estimate of the marginal likelihood for each model with 128 samples. Best previous results are repro-
duced in the first segment: [1]: (Salimans et al., 2014) [2]: (Burda et al., 2015) [3]: (Kaae Sønderby
et al., 2016) [4]: (Tran et al., 2015)

Model VLB log p(x) ⇡

Convolutional VAE + HVI [1] -83.49 -81.94
DLGM 2hl + IWAE [2] -82.90
LVAE [3] -81.74
DRAW + VGP [4] -79.88

Diagonal covariance -84.08 (± 0.10) -81.08 (± 0.08)
IAF (Depth = 2,Width = 320) -82.02 (± 0.08) -79.77 (± 0.06)
IAF (Depth = 2,Width = 1920) -81.17 (± 0.08) -79.30 (± 0.08)
IAF (Depth = 4,Width = 1920) -80.93 (± 0.09) -79.17 (± 0.08)
IAF (Depth = 8,Width = 1920) -80.80 (± 0.07) -79.10 (± 0.07)

Deep 
generative model

x

z3

z2

z1

Bidirectional 
inference model

VAE with 
bidirectional inference

+ =

z3

z2

z1

x

… …

z3

z2

z1

x

… …

x

…

ELU

ELU

+

ELU

ELU

+

Bottom-Up 
ResNet Block

Top-Down 
ResNet Block

Layer Prior: 
z ~ p(zi|z>i)

+

Identity

Layer Posterior: 
z ~ q(zi|z>i,x)

= Convolution ELU = Nonlinearity= Identity

Figure 3: Overview of our ResNet VAE with bidirectional inference. The posterior of each layer is
parameterized by its own IAF.

binarized MNIST: -79.10. On Hugo Larochelle’s statically binarized MNIST, our VAE with deep
IAF achieves a log-likelihood of -79.88, which is slightly worse than the best reported result, -79.2,
using the PixelCNN (van den Oord et al., 2016b).

6.2 CIFAR-10

We also evaluated IAF on the CIFAR-10 dataset of natural images. Natural images contain a much
greater variety of patterns and structure than MNIST images; in order to capture this structure well,
we experiment with a novel architecture, ResNet VAE, with many layers of stochastic variables, and
based on residual convolutional networks (ResNets) (He et al., 2015, 2016). Please see our appendix
for details.

Log-likelihood. See table 2 for a comparison to previously reported results. Our architecture with
IAF achieves 3.11 bits per dimension, which is better than other published latent-variable models,
and almost on par with the best reported result using the PixelCNN. See the appendix for more
experimental results. We suspect that the results can be further improved with more steps of flow,
which we leave to future work.

Synthesis speed. Sampling took about 0.05 seconds/image with the ResNet VAE model, versus
52.0 seconds/image with the PixelCNN model, on a NVIDIA Titan X GPU. We sampled from the
PixelCNN naïvely by sequentially generating a pixel at a time, using the full generative model at each
iteration. With custom code that only evaluates the relevant part of the network, PixelCNN sampling
could be sped up significantly; however the speedup will be limited on parallel hardware due to the

7
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Tim Salimans, Diederik P. Kingma, Max Welling
(ICML, 2015)

http://arxiv.org/find/stat/1/au:+Salimans_T/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Kingma_D/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Welling_M/0/1/0/all/0/1
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• Variational inference (a la VAE) and MCMC inference have different 
properties 

- Variational inference (VI) is efficient / MCMC is computationally intensive 

- VI has a fixed parametric form / MCMC asymptotically approaches  

• Can we combine these two approaches to find a good compromise?

z :

x :

g(z):

z :

x :

f(x):

qφ(z | x) = q(z; f(x,φ)) pθ(x | z) = p(x; g(z, θ))

p(z | x)
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• Basic Idea:  

- Consider sampling from the posterior                   as a physics simulation from a 
frictionless ball rolling on the potential energy surface E(x,z) = log p(x,z). 

- Augment with a velocity  v  with kinetic energy:  

- Total energy = Hamiltonian: H(x,z,v) = E(x,z) + K(v) 

• HMC innovation: If gradients of H(x,z,v) are available then we can 
use that information to move around the surface more effectively.

Hamiltonian Monte Carlo

The algorithm:

• Gibbs sample velocity ∼ N (0, I)

• Simulate Leapfrog dynamics for L steps

• Accept new position with probability
min[1, exp(H(v, x) − H(v′, x′))]

The original name is Hybrid Monte Carlo, with reference to the
“hybrid” dynamical simulation method on which it was based.

p(z | x)

K(v) = v⊤v/2
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The HMC algorithm: 

- Gibbs sample the velocity 
- Simulate leapfrog dynamics for T steps  
- Accept new position with probability 

v ∼ N (0, I)

vt+ �
2

= vt � �

2
�z (log p(x, zt))

zt+� = zt + �vt+ �
2

vt+� = vt+ �
2

� �

2
�z (log p(x, zt+�))

Leapfrog dynamics:

Hamiltonian Monte Carlo

The algorithm:

• Gibbs sample velocity ∼ N (0, I)

• Simulate Leapfrog dynamics for L steps

• Accept new position with probability
min[1, exp(H(v, x) − H(v′, x′))]

The original name is Hybrid Monte Carlo, with reference to the
“hybrid” dynamical simulation method on which it was based.

min [1, exp(H(x, z0,v0)−H(x, zT ,vT ))]
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Forward propagation

Backward propagation

z

x̂

pθ(x | z)

The HMC algorithm: 

- Gibbs sample the velocity 
- Simulate leapfrog dynamics for T steps  
- Accept new position with probability  

vt+ �
2

= vt � �

2
�z (log p(x, zt))

zt+� = zt + �vt+ �
2

vt+� = vt+ �
2

� �

2
�z (log p(x, zt+�))

v ∼ N (0, I)

Deep Generative Model:

Leapfrog dynamics:

min [1, exp(H(x, z0,v0)−H(x, zT ,vT ))]
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Fusing the VAE and HMC: 

• Central Idea: Interpret the stochastic Markov chain (from HMC) 

as a variational approximation in an expanded space.  

• Consider y = z0,z1,z2,...,zt-1 to be a set of auxiliary random variables. 

• We obtain a new (lower) lower bound on the log-likelihood: 

• where                     is an auxiliary inference distribution (we choose it).

q(z | x) = q(z0 | x)
T∏

t=1

q(zt | zt−1,x)

Laux = Eq(y,zT |x) [log p(x, zT )r(y | x, zT ) � log q(y, zT | x)]

= L � Eq(zT |x) {DKL [q(y | zT , x)�r(y | zT , x)]}
� L � log p(x)

r(y | zT ,x)
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• Assume the auxiliary inference distribution has a Markov structure: 

• With this, lower bound becomes  

• This will work for any MCMC method. Specializing to HMC involves 
some details (like considering the velocity). See paper for details.

r(z0, . . . , zt−1 | x, zT ) =
T∏

t=1

rt(zt−1 | x, zt)

Laux = Eq(y,zT |x)

�
log p(x, zT ) + log

r(z0, . . . , zT�1 | x, zT )

q(z0, . . . , zT | x)

�

= Eq(y,zT |x)

�
log

p(x, zT )

q(z0 | x)
+

T�

t=1

log
rt(zt�1 | x, zt)

qt(zt | x, zt�1)

�
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Markov Chain Monte Carlo and Variational Inference: Bridging the Gap

Algorithm 3 Hamiltonian variational inference (HVI)
Require: Unnormalized log posterior log p(x, z)
Require: Number of iterations T
Require: Momentum initialization distribution(s)

q
t

(v0
t

|z
t�1, x) and inverse model(s) r

t

(v
t

|z
t

, x)
Require: HMC stepsize and mass matrix ✏,M

Draw an initial random variable z0 ⇠ q(z0|x)
Init. lower bound L = log[p(x, z0)]� log[q(z0|x)]
for t = 1 : T do

Draw initial momentum v0
t

⇠ q
t

(v0
t

|x, z
t�1)

Set z
t

, v
t

= Hamiltonian Dynamics(z
t�1, v

0
t

)

Calculate the ratio ↵
t

=

p(x,zt)rt(vt|x,zt)
p(x,zt�1)qt(v0

t|x,zt�1)

Update the lower bound L = L+ log[↵
t

]

end for
return lower bound L, approx. posterior draw z

T

Here we omit the Metropolis-Hastings step that is typically
used with Hamiltonian Monte Carlo. Section 4.1 discusses
how such as step could be integrated into Algorithm 3.

We fit the variational approximation to the true posterior
distribution by stochastically maximizing the lower bound
with respect to q,r and the parameters (stepsize and mass
matrix) of the Hamiltonian dynamics using Algorithm 2.
We call this version of the algorithm Hamiltonian Varia-
tional Inference (HVI). After running the algorithm to con-
vergence, we then have an optimized approximation q(z|x)
of the posterior distribution. Because our approximation
automatically adapts to the local shape of the exact pos-
terior, this approximation will often be better than a varia-
tional approximation with a fixed functional form, provided
our model for r

t

(v
t

|x, z
t

) is flexible enough.

In addition to improving the quality of our approximation,
we find that adding HMC steps to a variational approxi-
mation often reduces the variance in our stochastic gradi-
ent estimates, thereby speeding up the optimization. The
downside of using this algorithm is that its computational
cost per iteration is higher than when using an approximate
q(z|x) of a fixed form, mainly owing to the need of calcu-
lating additional derivatives of log p(x, z). These deriva-
tives may also be difficult to derive by hand, so it is ad-
visable to use an automatic differentiation package such as
Theano (Bastien et al., 2012). As a rule of thumb, using
the Hamiltonian variational approximation with m MCMC
steps and k leapfrog steps is about mk times as expensive
per iteration as when using a fixed form approximation.
This may be offset by reducing the number of iterations,
and in practice we find that adding a single MCMC step
to a fixed-form approximation often speeds up the conver-
gence of the lower bound optimization in wallclock time.
The scaling of the computational demands in the dimen-
sionality of z is the same for both Hamiltonian variational
approximation and fixed form variational approximation,

and depends on the structure of p(x, z).

Compared to regular Hamiltonian Monte Carlo, Algo-
rithm 3 has a number of advantages: The samples drawn
from q(z|x) are independent, the parameters of the Hamil-
tonian dynamics (M, ✏) are automatically tuned, and we
may choose to omit the Metropolis-Hastings step so as not
to reject any of the proposed transitions. Furthermore, we
optimize a lower bound on the log marginal likelihood, and
we can assess the approximation quality using the tech-
niques discussed in (Salimans & Knowles, 2013). By find-
ing a good initial distribution q(z0), we may also speed up
convergence to the true posterior and get a good posterior
approximation using only a very short Markov chain, rather
than relying on asymptotic theory.

3.1. Example: A beta-binomial model for
overdispersion

To demonstrate our Hamiltonian variational approximation
algorithm we use an example from (Albert, 2009), which
considers the problem of estimating the rates of death from
stomach cancer for the largest cities in Missouri. The data
is available from the R package LearnBayes. It consists of
20 pairs (n

j

, x
j

) where n
j

contains the number of individ-
uals that were at risk for cancer in city j, and x

j

is the num-
ber of cancer deaths that occurred in that city. The counts
x
j

are overdispersed compared to what one could expect
under a binomial model with constant probability, so (Al-
bert, 2009) assumes a beta-binomial model with a two di-
mensional parameter vector z. The low dimensionality of
this problem allows us to easily visualize the results.

We use a variational approximation containing a single
HMC step so that we can easily integrate out the 2 momen-
tum variables numerically for calculating the exact KL-
divergence of our approximation and to visualize our re-
sults. We choose q

✓

(z0), q✓(v
0
1|z0), r✓(v1|z1) to all be mul-

tivariate Gaussian distributions with diagonal covariance
matrix. The mass matrix M is also diagonal. The means
of q

✓

(v01|z0) and r
✓

(v1|z1) are defined as linear functions
in z and r

z

log p(x, z), with adjustable coefficients. The
covariance matrices are not made to depend on z, and the
approximation is run using different numbers of leapfrog
steps in the Hamiltonian dynamics.

As can be seen from Figures 2 and 3, the Hamiltonian dy-
namics indeed helps us improve the posterior approxima-
tion. Most of the benefit is realized in the first two leapfrog
iterations. Of course, more iterations may still prove use-
ful for different problems and different specifications of
q
✓

(z0), q✓(v
0
1|z0), r✓(v1|z1), and additional MCMC steps

may also help. Adjusting only the means of q
✓

(v01|z0) and
r
✓

(v1|z1) based on the gradient of the log posterior is a
simple specification that achieves good results. We find
that even simpler parameterizations still do quite well, by
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Fusing the VAE and Hamiltonian MC 

- Gibbs sample the velocity 
- Simulate leapfrog dynamics for T steps  
- Accept new position with probability 

v ∼ N (0, I)

Markov Chain Monte Carlo and Variational Inference: Bridging the Gap

Algorithm 3 Hamiltonian variational inference (HVI)
Require: Unnormalized log posterior log p(x, z)
Require: Number of iterations T
Require: Momentum initialization distribution(s)

q
t

(v0
t

|z
t�1, x) and inverse model(s) r

t

(v
t

|z
t

, x)
Require: HMC stepsize and mass matrix ✏,M

Draw an initial random variable z0 ⇠ q(z0|x)
Init. lower bound L = log[p(x, z0)]� log[q(z0|x)]
for t = 1 : T do

Draw initial momentum v0
t

⇠ q
t

(v0
t

|x, z
t�1)

Set z
t

, v
t

= Hamiltonian Dynamics(z
t�1, v

0
t

)

Calculate the ratio ↵
t

=

p(x,zt)rt(vt|x,zt)
p(x,zt�1)qt(v0

t|x,zt�1)

Update the lower bound L = L+ log[↵
t

]

end for
return lower bound L, approx. posterior draw z

T

Here we omit the Metropolis-Hastings step that is typically
used with Hamiltonian Monte Carlo. Section 4.1 discusses
how such as step could be integrated into Algorithm 3.

We fit the variational approximation to the true posterior
distribution by stochastically maximizing the lower bound
with respect to q,r and the parameters (stepsize and mass
matrix) of the Hamiltonian dynamics using Algorithm 2.
We call this version of the algorithm Hamiltonian Varia-
tional Inference (HVI). After running the algorithm to con-
vergence, we then have an optimized approximation q(z|x)
of the posterior distribution. Because our approximation
automatically adapts to the local shape of the exact pos-
terior, this approximation will often be better than a varia-
tional approximation with a fixed functional form, provided
our model for r

t

(v
t

|x, z
t

) is flexible enough.

In addition to improving the quality of our approximation,
we find that adding HMC steps to a variational approxi-
mation often reduces the variance in our stochastic gradi-
ent estimates, thereby speeding up the optimization. The
downside of using this algorithm is that its computational
cost per iteration is higher than when using an approximate
q(z|x) of a fixed form, mainly owing to the need of calcu-
lating additional derivatives of log p(x, z). These deriva-
tives may also be difficult to derive by hand, so it is ad-
visable to use an automatic differentiation package such as
Theano (Bastien et al., 2012). As a rule of thumb, using
the Hamiltonian variational approximation with m MCMC
steps and k leapfrog steps is about mk times as expensive
per iteration as when using a fixed form approximation.
This may be offset by reducing the number of iterations,
and in practice we find that adding a single MCMC step
to a fixed-form approximation often speeds up the conver-
gence of the lower bound optimization in wallclock time.
The scaling of the computational demands in the dimen-
sionality of z is the same for both Hamiltonian variational
approximation and fixed form variational approximation,

and depends on the structure of p(x, z).

Compared to regular Hamiltonian Monte Carlo, Algo-
rithm 3 has a number of advantages: The samples drawn
from q(z|x) are independent, the parameters of the Hamil-
tonian dynamics (M, ✏) are automatically tuned, and we
may choose to omit the Metropolis-Hastings step so as not
to reject any of the proposed transitions. Furthermore, we
optimize a lower bound on the log marginal likelihood, and
we can assess the approximation quality using the tech-
niques discussed in (Salimans & Knowles, 2013). By find-
ing a good initial distribution q(z0), we may also speed up
convergence to the true posterior and get a good posterior
approximation using only a very short Markov chain, rather
than relying on asymptotic theory.

3.1. Example: A beta-binomial model for
overdispersion

To demonstrate our Hamiltonian variational approximation
algorithm we use an example from (Albert, 2009), which
considers the problem of estimating the rates of death from
stomach cancer for the largest cities in Missouri. The data
is available from the R package LearnBayes. It consists of
20 pairs (n

j

, x
j

) where n
j

contains the number of individ-
uals that were at risk for cancer in city j, and x

j

is the num-
ber of cancer deaths that occurred in that city. The counts
x
j

are overdispersed compared to what one could expect
under a binomial model with constant probability, so (Al-
bert, 2009) assumes a beta-binomial model with a two di-
mensional parameter vector z. The low dimensionality of
this problem allows us to easily visualize the results.

We use a variational approximation containing a single
HMC step so that we can easily integrate out the 2 momen-
tum variables numerically for calculating the exact KL-
divergence of our approximation and to visualize our re-
sults. We choose q

✓

(z0), q✓(v
0
1|z0), r✓(v1|z1) to all be mul-

tivariate Gaussian distributions with diagonal covariance
matrix. The mass matrix M is also diagonal. The means
of q

✓

(v01|z0) and r
✓

(v1|z1) are defined as linear functions
in z and r

z

log p(x, z), with adjustable coefficients. The
covariance matrices are not made to depend on z, and the
approximation is run using different numbers of leapfrog
steps in the Hamiltonian dynamics.

As can be seen from Figures 2 and 3, the Hamiltonian dy-
namics indeed helps us improve the posterior approxima-
tion. Most of the benefit is realized in the first two leapfrog
iterations. Of course, more iterations may still prove use-
ful for different problems and different specifications of
q
✓

(z0), q✓(v
0
1|z0), r✓(v1|z1), and additional MCMC steps

may also help. Adjusting only the means of q
✓

(v01|z0) and
r
✓

(v1|z1) based on the gradient of the log posterior is a
simple specification that achieves good results. We find
that even simpler parameterizations still do quite well, by

Forward propagation

Backward propagation

z

x x̂

qφ(z | x) pθ(x | z)
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activations and Gaussian output with diagonal covariance
structure.

In a third experiment, we replaced the fully-connected net-
works with convolutional networks in both the inference
model and the generative model. The inference model
consists of three convolutional layers with 5⇥5 filters,
[16,32,32] feature maps, stride of 2 and softplus activa-
tions. The convolutional layers are followed by a single
fully-connected layer with n

h

= 300 units and softplus
activations. The architecture of the generative model mir-
rors the inference model but with stride replaced by upsam-
pling, similar to (Dosovitskiy et al., 2014). The number of
leapfrog steps was varied from 0 to 16. After broader model
search with a validation set, we trained a final model with
16 leapfrog steps and n

h

= 800.

Table 1. Comparison of our approach to other recent methods in
the literature. We compare the average marginal log-likelihood
measured in nats of the digits in the MNIST test set. See sec-
tion 3.2 for details.

Model log p(x) log p(x)
 � = �

HVI + fully-connected VAE:
Without inference network:
5 leapfrog steps 90.86 87.16
10 leapfrog steps 87.60 85.56
With inference network:
No leapfrog steps 94.18 88.95
1 leapfrog step 91.70 88.08
4 leapfrog steps 89.82 86.40
8 leapfrog steps 88.30 85.51

HVI + convolutional VAE:
No leapfrog steps 86.66 83.20
1 leapfrog step 85.40 82.98
2 leapfrog steps 85.17 82.96
4 leapfrog steps 84.94 82.78
8 leapfrog steps 84.81 82.72
16 leapfrog steps 84.11 82.22
16 leapfrog steps, n

h

= 800 83.49 81.94

From (Gregor et al., 2015):
DBN 2hl 84.55
EoNADE 85.10
DARN 1hl 88.30 84.13
DARN 12hl 87.72
DRAW 80.97

Stochastic gradient-based optimization was performed us-
ing Adam (Kingma & Ba, 2014) with default hyper-
parameters. Before fitting our models to the full training
set, the model hyper-parameters and number of training
epochs were determined based on performance on a vali-

dation set of about 15% of the available training data. The
marginal likelihood of the test set was estimated with im-
portance sampling by taking a Monte Carlo estimate of
the expectation p(x) = E

q(z|x)[p(x, z)/q(z|x)] (Rezende
et al., 2014) with over a thousand importance samples per
test-set datapoint.

See table 1 for our numerical results and a comparison to
reported results with other methods. Without an inference
network and with 10 leapfrog steps we were able to achieve
a mean test-set lower bound of �87.6, and an estimated
mean marginal likelihood of �85.56. When no Hamilto-
nian dynamics was included the gap is more than 5 nats;
the smaller difference of 2 nats when 10 leapfrog steps
were performed illustrates the bias-reduction effect of the
MCMC chain. Our best result is 81.94 nats with convolu-
tional networks for inference and generation, and HVI with
16 leapfrog steps. This is slightly worse than the best re-
ported number with DRAW (Gregor et al., 2015), a VAE
with recurrent neural networks for both inference and gen-
eration. Our approaches are not mutually exclusive, and
could indeed be combined for even better results.

The model can also be trained with a two-dimensional
latent space to obtain a low-dimensional visualization of
data. See figure 4 for a visualization of the latent space of
such a model trained on the MNIST digits.

Figure 4. Visualization of the two-dimensional latent space of a
generative model trained with our proposed Hamiltonian varia-
tional posterior approximation; shown here are the mean images
p(x|z) corresponding to different points z in latent space. Our
proposed method results in better samples than what could be ob-
tained when just using an inference network (without fine-tuning
by Hamiltonian dynamics) as in (Kingma & Welling, 2014).



The end. 
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