Optimization for Training I First-Order Methods Training algorithm

OPTIMIZATION METHODS

Topics: Types of optimization methods.

- Practical optimization methods breakdown into two categories:
 - I. First-order methods
 - 2. Second-order methods-

$$\hat{J}(\boldsymbol{\theta}) = J(\boldsymbol{a}) + \nabla_{\boldsymbol{\theta}} J(\boldsymbol{a})(\boldsymbol{\theta} - \boldsymbol{a}) + \frac{1}{2}(\boldsymbol{\theta})$$

Today we will focus on first-order methods

 $(-a)^{ op} H(\theta - a)$

STOCHASTIC GRADIENT DESCENT

- Vanilla SGD is still probably the most popular method of training deep learning models.
- (+) Works on a single example or a mini-batch / () Can converge slowly.

Algorithm 1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ϵ_k .

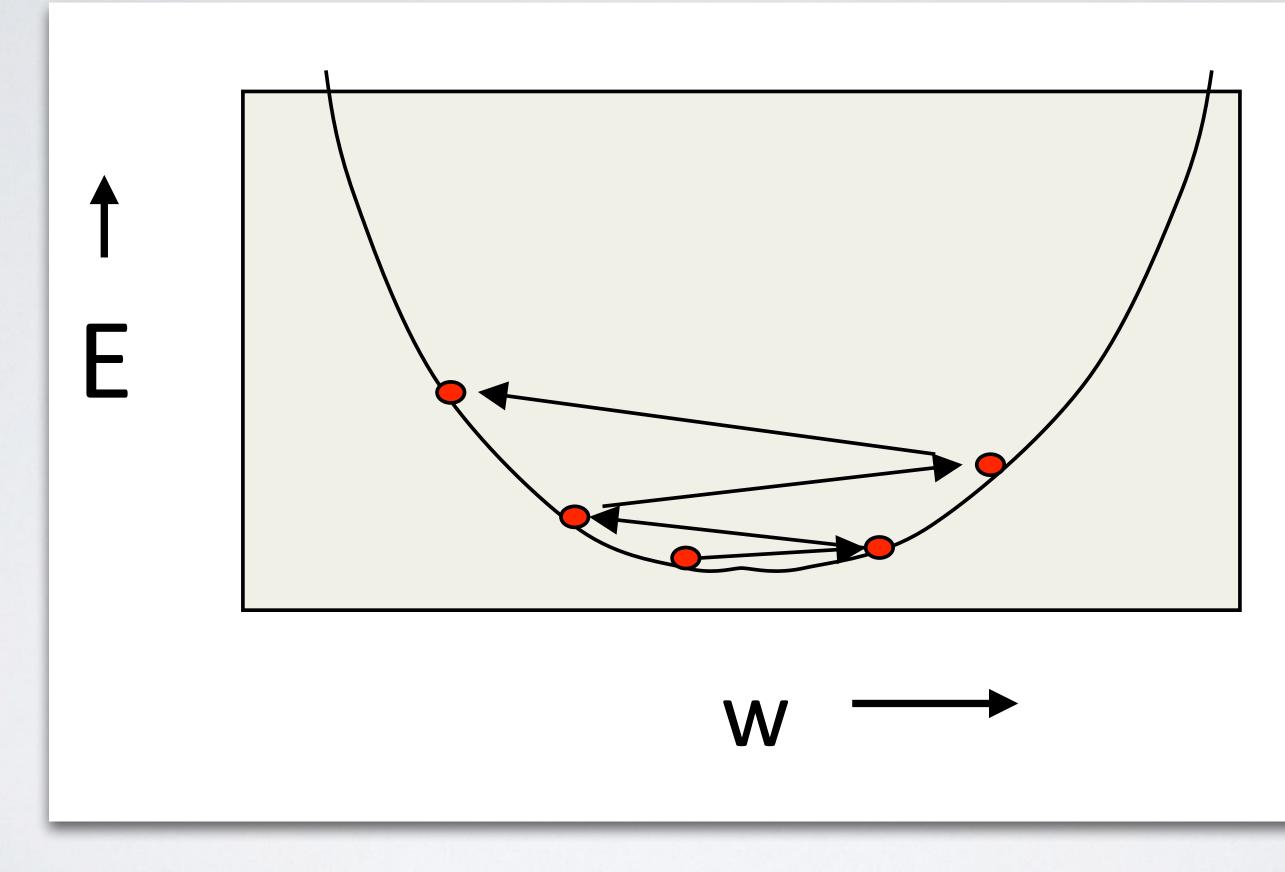
Require: Initial parameter $\boldsymbol{\theta}$ while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$. Compute gradient estimate: $\hat{h} \leftarrow +\frac{1}{m} \nabla_{\theta} \sum_{i} L(f)$

Apply update: $\theta \leftarrow \theta - \epsilon h$

end while

$$f(oldsymbol{x}^{(i)};oldsymbol{ heta}),oldsymbol{y}^{(i)})$$

STOCHASTIC GRADIENT DESCENT



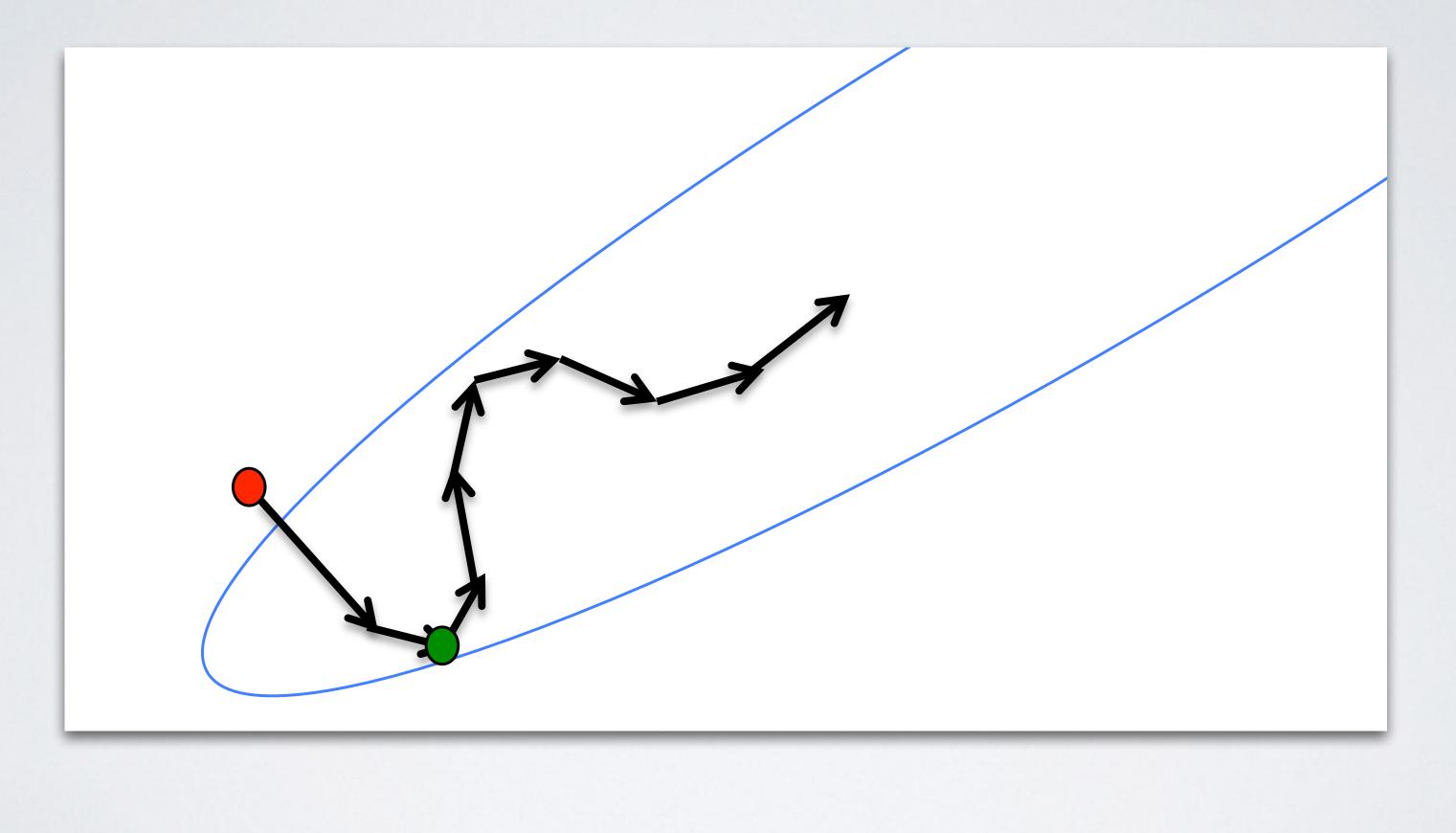
MOMENTUM METHOD

- Designed to accelerate learning, especially with small consistent gradients.
- Inspired from physical interpretation of the optimization process: Imagine you have a small ball rolling on a surface defined by the loss function.

MOMENTUM METHOD

Algorithm 1 Stochastic gradient descent (SGD) with momentum **Require:** Learning rate ϵ , momentum parameter α . **Require:** Initial parameter $\boldsymbol{\theta}$, initial velocity \boldsymbol{v} . while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$. Compute gradient estimate: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{h}$ Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}$ end while

MOMENTUM METHOD



NESTEROV MOMENTUM • Sutskever et al (ICML 2013) presented a modified version of momentum they

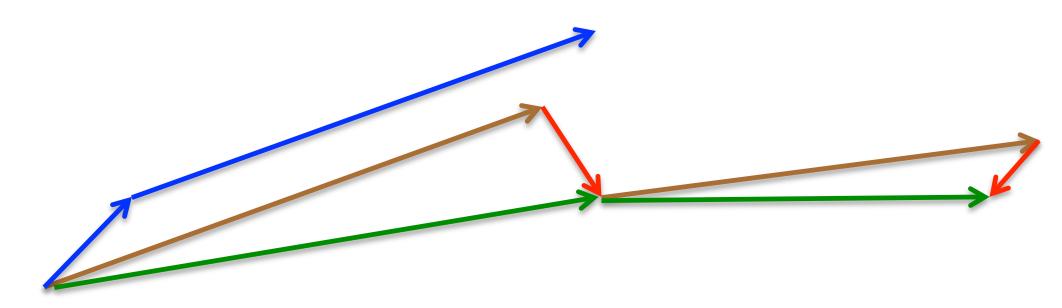
- called Nesterov momentum.
- Basic idea: apply the gradient "correction" after the velocity term is applied.

NESTEROV MOMENTUM

Algorithm 1 Stochastic gradient descent (SGD) with Nesterov momentum **Require:** Learning rate ϵ , momentum parameter α . **Require:** Initial parameter $\boldsymbol{\theta}$, initial velocity \boldsymbol{v} . while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding labels $y^{(i)}$. Apply interim update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$ Compute gradient (at interim point): $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)})$ Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{h}$ Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}$ end while

NESTEROV MOMENTUM

- First make a big jump in the direction of the previous accumulated gradient.
- Then measure the gradient where you end up and make a correction.



brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum

Slide from Hinton's Coursera course.

ADAGRAD

- Adagrad (Duchi et al, COLT 2010) is a method of adapting the learning rate.
- (+) Can adapt independent learning rates for all parameters
- (-) Accumulating gradients from the start makes later learning very slow.

)A(RAD)

Algorithm 1 The AdaGrad algorithm

Require: Global learning rate ϵ **Require:** Initial parameter $\boldsymbol{\theta}$ **Require:** Small constant δ , perhaps 10^{-7} , for numerical stability Initialize gradient accumulation variable r = 0while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$. Compute gradient: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ Accumulate squared gradient: $r \leftarrow r + h \odot h$ Compute update: $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot h$. (Division and square root applied element-wise) Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$ end while

RMSPROP

Algorithm 1 The RMSProp algorithm

- **Require:** Global learning rate ϵ , decay rate ρ . **Require:** Initial parameter $\boldsymbol{\theta}$
- **Require:** Small constant δ , usually 10^{-6} , used to stabilize division by small numbers.
 - Initialize accumulation variables r = 0
 - while stopping criterion not met do
 - Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ Accumulate squared gradient: $\boldsymbol{r} \leftarrow \rho \boldsymbol{r} + (1 - \rho) \boldsymbol{h} \odot \boldsymbol{h}$ Compute parameter update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta+r}} \odot h$. $(\frac{1}{\sqrt{\delta+r}}$ applied elem-wise) Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$

end while

RMSPROP+MOMENTUM

Algorithm 1 RMSProp algorithm with Nesterov momentum **Require:** Global learning rate ϵ , decay rate ρ , momentum coefficient α . **Require:** Initial parameter $\boldsymbol{\theta}$, initial velocity \boldsymbol{v} . Initialize accumulation variable r = 0while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$. Compute interim update: $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$ Compute gradient: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)})$ Accumulate gradient: $\boldsymbol{r} \leftarrow \rho \boldsymbol{r} + (1 - \rho) \boldsymbol{h} \odot \boldsymbol{h}$ Compute velocity update: $v \leftarrow \alpha v - \frac{\epsilon}{\sqrt{r}} \odot h$. $(\frac{1}{\sqrt{r}}$ applied element-wise) Apply update: $\theta \leftarrow \theta + v$ end while

ADAM

- ``Adam'' derives from the phrase ``adaptive moments.''
- Variant of RMSProp + momentum with a few important distinctions:
 - I. Momentum is incorporated directly as an estimate of the first order moment (with exponential weighting) of the gradient.
 - 2. Includes bias corrections to the estimates of both the first-order moments (the momentum term) and the (uncentered) second-order moments to account for their initialization at the origin.
- To date, Adam has largely become the default optimization algorithm for training deep learning systems.

Algorithm 1 The Adam algorithm

Require: Step size ϵ (Suggested default: 0.001) **Require:** Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1). (Suggested defaults: 0.9 and 0.999 respectively) **Require:** Small constant δ used for numerical stabilization. (Suggestion: 10^{-8}) **Require:** Initial parameters $\boldsymbol{\theta}$

Initialize 1st and 2nd moment variables s = 0, r = 0Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$. Compute gradient: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

 $t \leftarrow t + 1$

Update biased first moment estimate: $\boldsymbol{s} \leftarrow \rho_1 \boldsymbol{s} + (1 - \rho_1) \boldsymbol{h}$ Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{h} \odot \mathbf{h}$ Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$ Correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-\rho_2^t}$ Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise) Apply update: $\theta \leftarrow \theta + \Delta \theta$ end while

16