
Optimization for Training I
First-Order Methods Training algorithm

OPTIMIZATION METHODS
2

Topics: Types of optimization methods.
• Practical optimization methods breakdown into two

categories:
1. First-order methods
2. Second-order methods

• Today we will focus on first-order methods

Ĵ(θ) = J(a) +∇θJ(a)(θ − a) +
1

2
(θ − a)⊤H(θ − a)

STOCHASTIC GRADIENT DESCENT
3

• Vanilla SGD is still probably the most popular method of training deep learning
models.

• (+) Works on a single example or a mini-batch / (-) Can converge slowly.
Algorithm 1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate �k.
Require: Initial parameter �

while stopping criterion not met do
Sample a minibatch of m examples from the training set {x(1), . . . , x(m)}
with corresponding targets y(i).
Compute gradient estimate: ĥ � + 1

m��
�

i L(f(x(i); �), y(i))

Apply update: � � � � �ĥ
end while

STOCHASTIC GRADIENT DESCENT
4

How!the!learning!goes!wrong!

•  If!the!learning!rate!is!big,!the!weights!slosh!to!
and!fro!across!the!ravine.!!
–  If!the!learning!rate!is!too!big,!this!

oscilla@on!diverges.!
•  What!we!would!like!to!achieve:!

–  Move!quickly!in!direc@ons!with!small!but!
consistent!gradients.!

–  Move!slowly!in!direc@ons!with!big!but!
inconsistent!gradients.!

E!

w!

MOMENTUM METHOD
5

• Designed to accelerate learning, especially with small consistent gradients.
• Inspired from physical interpretation of the optimization process: Imagine you have

a small ball rolling on a surface defined by the loss function.

MOMENTUM METHOD
6

Algorithm 1 Stochastic gradient descent (SGD) with momentum

Require: Learning rate �, momentum parameter �.
Require: Initial parameter �, initial velocity v.

while stopping criterion not met do
Sample a minibatch of m examples from the training set {x(1), . . . , x(m)}
with corresponding targets y(i).
Compute gradient estimate: h � 1

m��
�

i L(f(x(i); �), y(i))
Compute velocity update: v � �v � �h
Apply update: � � � + v

end while

MOMENTUM METHOD
7

The!intui@on!behind!the!momentum!method!

!!!!Imagine!a!ball!on!the!error!surface.!The!
loca@on!of!the!ball!in!the!horizontal!
plane!represents!the!weight!vector.!
–  The!ball!starts!off!by!following!the!

gradient,!but!once!it!has!velocity,!
it!no!longer!does!steepest!descent.!!

–  Its!momentum!makes!it!keep!
going!in!the!previous!direc@on.!

•  It!damps!oscilla@ons!in!direc@ons!of!
high!curvature!by!combining!
gradients!with!opposite!signs.!

•  It!builds!up!speed!in!direc@ons!with!
a!gentle!but!consistent!gradient.!

NESTEROV MOMENTUM
8

• Sutskever et al (ICML 2013) presented a modified version of momentum they
called Nesterov momentum.

• Basic idea: apply the gradient “correction” after the velocity term is applied.

NESTEROV MOMENTUM
9

Algorithm 1 Stochastic gradient descent (SGD) with Nesterov momentum

Require: Learning rate �, momentum parameter �.
Require: Initial parameter �, initial velocity v.

while stopping criterion not met do
Sample a minibatch of m examples from the training set {x(1), . . . , x(m)}
with corresponding labels y(i).
Apply interim update: �̃ � � + �v
Compute gradient (at interim point): h � 1

m��̃

�
i L(f(x(i); �̃), y(i))

Compute velocity update: v � �v � �h
Apply update: � � � + v

end while

NESTEROV MOMENTUM
10

A!picture!of!the!Nesterov!method!!

•  First!make!a!big!jump!in!the!direc@on!of!the!previous!accumulated!gradient.!
•  Then!measure!the!gradient!where!you!end!up!and!make!a!correc@on.!

!

brown!vector!=!jump,!!!!!!!red!vector!=!correc@on,!!!!!!!green!vector!=!accumulated!gradient!
!
blue!vectors!=!standard!momentum!

Slide from Hinton’s Coursera course.

ADAGRAD
11

• Adagrad (Duchi et al, COLT 2010) is a method of adapting the learning rate.

• (+) Can adapt independent learning rates for all parameters
• (-) Accumulating gradients from the start makes later learning very slow.

ADAGRAD
12

Algorithm 1 The AdaGrad algorithm

Require: Global learning rate �
Require: Initial parameter �
Require: Small constant �, perhaps 10�7, for numerical stability

Initialize gradient accumulation variable r = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), . . . , x(m)}
with corresponding targets y(i).
Compute gradient: h � 1

m��
�

i L(f(x(i); �), y(i))
Accumulate squared gradient: r � r + h � h
Compute update: �� � � �

�+
�

r
� h. (Division and square root applied

element-wise)
Apply update: � � � + ��

end while

RMSPROP
13

Algorithm 1 The RMSProp algorithm

Require: Global learning rate �, decay rate �.
Require: Initial parameter �
Require: Small constant �, usually 10�6, used to stabilize division by small

numbers.
Initialize accumulation variables r = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), . . . , x(m)}
with corresponding targets y(i).
Compute gradient: h � 1

m��
�

i L(f(x(i); �), y(i))
Accumulate squared gradient: r � �r + (1 � �)h � h
Compute parameter update: �� = � ��

�+r
�h. (1�

�+r
applied elem-wise)

Apply update: � � � + ��
end while

RMSPROP+MOMENTUM
14

Algorithm 1 RMSProp algorithm with Nesterov momentum

Require: Global learning rate �, decay rate �, momentum coe�cient �.
Require: Initial parameter �, initial velocity v.

Initialize accumulation variable r = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), . . . , x(m)}
with corresponding targets y(i).
Compute interim update: �̃ � � + �v
Compute gradient: h � 1

m��̃

�
i L(f(x(i); �̃), y(i))

Accumulate gradient: r � �r + (1 � �)h � h
Compute velocity update: v � �v � ��

r
� h. (1�

r
applied element-wise)

Apply update: � � � + v
end while

ADAM
15

• ``Adam'' derives from the phrase ``adaptive moments.''
• Variant of RMSProp + momentum with a few important distinctions:

1. Momentum is incorporated directly as an estimate of the first order moment
(with exponential weighting) of the gradient.

2. Includes bias corrections to the estimates of both the first-order moments (the
momentum term) and the (uncentered) second-order moments to account for
their initialization at the origin.

• To date, Adam has largely become the default optimization algorithm for training
deep learning systems.

ADAM:
16Algorithm 1 The Adam algorithm

Require: Step size � (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, �1 and �2 in [0, 1).

(Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant � used for numerical stabilization. (Suggestion: 10�8)
Require: Initial parameters �

Initialize 1st and 2nd moment variables s = 0, r = 0
Initialize time step t = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), . . . , x(m)}
with corresponding targets y(i).
Compute gradient: h � 1

m��
�

i L(f(x(i); �), y(i))
t � t + 1
Update biased first moment estimate: s � �1s + (1 � �1)h
Update biased second moment estimate: r � �2r + (1 � �2)h � h
Correct bias in first moment: ŝ � s

1��t
1

Correct bias in second moment: r̂ � r
1��t

2

Compute update: �� = �� ŝ�
r̂+�

(operations applied element-wise)

Apply update: � � � + ��
end while

